Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus ou, pourquoi pas, de créer leur propre blog...
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


lundi 3 janvier 2011

Mathiroise

le blog Mathiroise a pour ambition de faire des mathématiques autrement. C'est un blog d'Alain ANDRE, professeur de mathématiques au Lycée de l'Iroise à Brest.

dimanche 2 janvier 2011

2011

Parmi toutes les propriétés du nombre 2011, voici celle qui m'a le plus plu :

2011 est un nombre premier et est aussi la somme de 11 nombres premiers consécutifs : 2011 = 157 + 163 + 167 + 173 + 179 + 181 + 191 + 193 + 197 + 199 + 211.

Joli, non ?

Source : NumberADay

samedi 1 janvier 2011

La vache - Bonne année


mercredi 22 décembre 2010

Gerhard Richter : 4900 couleurs

Né à Dresde en 1932, Gerhard Richter explore la peinture dans des genres si divers qu'ils paraissent d'auteurs différents quand on ne le connaît pas. Il a entre autres créé des compositions faites de carrés de couleurs placés sur une grille. Le peintre a entamé ce dernier type de travail dès 1966, mais c'est une toute récente série qu'il a présenté à Londres à la Serpentine Gallery en 2008. Elle est basée sur une combinaison de 25 couleurs démultipliées sur 196 petits carrés.
Vous pouvez voir ce travail sur son site 4900 colours. Contrairement à ce que l'on pourrait croire, les couleurs ne sont pas du tout disposées au hasard. En effet, un programme informatique plaçant les couleurs complètement aléatoirement créerait obligatoirement des "grappes" (plusieurs cases adjacentes de même couleur), ce qui n'est jamais le cas dans les toiles de Richter.

lundi 20 décembre 2010

Carl Sagan a tué le père Noël

Le père Noël est à la mode en cette fin d’année. Voilà un personnage bien commode pour conditionner la bonne conduite des petits enfants. Il est cependant beaucoup moins facile de prouver son existence. Étonnamment, l’existence du père Noël est l’objet très sérieux d’un problème scientifique. Alors, que dire à nos enfants ?

L’existence du père Noël, un problème scientifique

Nous connaissons tous l’histoire. Ce bonhomme rouge que nous appelons père Noël remplit sa hotte de jouets, monte sur son traîneau, commence sa tournée avec Rudolf, son renne au nez rouge luminescent (c’est bien pratique), s’arrête à chaque maison, remplit chaque chaussette d’un cadeau (au moins) et repart jusqu’à la maison suivante. Il est donc possible, si l’on connaît le nombre de maisons et de chaussettes, de pouvoir calculer un tel voyage dans le cadre de lois physiques. Selon Karl Popper, ce problème est falsifiable : il s’agit bien d’un problème scientifique.


La démonstration de Carl Sagan

Le regretté Carl Sagan, avec son hypothèse portant uniquement sur les États-Unis, porte un coup fatal à Santa. Le père Noël dispose de huit heures pour visiter 100 millions de maisons (sans mentionner le problème de la propulsion du traîneau). Supposons qu’il passe au moins une seconde à remplir les chaussettes. Sa tournée lui prendrait trois ans. Conclusion : impossible de réaliser ce tour de passe-passe en huit heures. CQFD. S’il l’on considère, en plus, que cette seconde inclut la descente par la cheminée, le garnissage de la chaussette et le retour au traîneau, l’histoire se complique. La durée totale ne peut être inférieure à l’une de ces trois étapes et donc à la descente de la cheminée. Supposons qu’elle ait une hauteur de cinq mètres, il faudrait une chute libre de la même hauteur, qui prend une seconde. Le mythe du père Noël ne tient plus debout.

Travelling Santa Problem

À partir de 1988, le mystère du père Noël est rebaptisé TSP, Travelling Santa Problem. Des scientifiques tels que Vernon P. Templeman ou Richard Waller étudièrent d’autres parties du problème. En considérant le poids de la cargaison (300.000 tonnes de jouets) ainsi que la vitesse de livraison (3.000 fois la vitesse de la lumière), Waller constata que la résistance de l’air ferait disparaître l’attelage en flammes. De plus, on ne connaît pas de renne volant. Le scientifique en conclut donc que le père Noël était mort...

Les paramètres du TSP

Ce modèle inclut, en outre, plusieurs paramètres. Le sac de jouets est un aspect majeur, mais il faut aussi penser au traîneau : le modèle à rennes est écarté pour lui préférer une sorte de convoi en lévitation de 600 kilomètres de long. Bien que l’aspect luminescent de la truffe de Rudolph ne soit pas à écarter – les lucioles sont luminescentes après tout –, on peut en déduire qu’il s’agit d’un animal mutant, d'autant qu'il représente un cas unique de ruminant volant. Les rennes que nous connaissons ne peuvent tracter que 150 kilos. Il faudrait donc 2 millions de rennes (et un attelage de 2.000 kilomètres) pour avoir une chance pour les cadeaux d’arriver à bon port.
Il faut également considérer l’accélération après chaque arrêt, la résistance de l'harnachement, le temps de travail avec le décalage horaire, le bruit généré par un tel convoi, la longueur du parcours, la vitesse de croisière, l’énergie nécessaire et la question incontournable des cheminées (auxquelles le chauffage électrique et au gaz ont fait du tort). Il reste un autre problème, et non le moindre : celui de la légalité d’une telle entreprise (s’introduire dans une maison pendant la nuit constitue une violation de domicile caractérisée).

Conclusion

Nous sommes donc bien contraints de conclure que le père Noël n’existe pas, la science l’a tué... Mais ne le dites pas aux enfants et que cela ne vous empêche pas de perpétuer la tradition !

Source : Futura-Sciences

samedi 18 décembre 2010

Formacube


Voir le site officiel du Formacube

mercredi 15 décembre 2010

Sacha

mardi 14 décembre 2010

Un rectangle en trop



Source : Owlydays

lundi 13 décembre 2010

Roman Opalka et le temps qui passe

Roman Opałka, né en 1931, est un peintre français d'origine polonaise. Depuis 1965, il peint des lignes de nombre en ordre croissant sur des toiles, les « détails », afin d'inscrire une trace d'un temps irréversible.

Roman Opalka est un artiste que l'on pourrait caractériser de protocolaire. En effet, depuis 1965, il peint des lignes de nombres sur une toile. Ses nombres sont en blanc sur fond noir, il commence par peindre du coin supérieur gauche jusqu'au coin inférieur droit. Partant de 1 en 1965, il a atteint en 1972 le million.
À partir de cette date, il décide d'ajouter 1% de blanc au fond de chaque toile qu'il appelle « Détail ». Chaque détail s'éclaircit donc progressivement, jusqu'à ce que chaque Détail soit de nos jours presque blanc. Chaque « Détail » est une toile de 196 x 135 cm, les chiffres sont réalisés avec un pinceau no 0.
À ce jour, Opalka en est à son 227e « Détail », le 22 juillet 2004, il était arrivé au nombre 5 486 028 (source : Le Monde du 31 juillet 2004).
Il peint environ 380 nombres par jour.



Source : Wikipédia
Lire aussi : Ça n’en finira donc jamais ? dans Images des mathématiques

dimanche 12 décembre 2010

La vache - La prairie tournante


< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 >