Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus ou, pourquoi pas, de créer leur propre blog...
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


mardi 2 mai 2017

Des chercheurs genevois percent le secret des couleurs des lézards

lundi 1 mai 2017

La peau d'un lézard expliquée par les maths


Le lézard ocellé fait exception dans le règne animal, sa coloration s'organise à l'échelle de l'écaille plutôt que de la cellule. Des chercheurs lémaniques démontrent que la chose peut être expliquée par un système mathématique inventé en 1948 par John von Neumann.

Equations de Turing impuissantes

Chez tous les animaux, du poisson-clown au léopard, les changements de couleur de peau et les dessins qu'ils produisent sont dus à des interactions microscopiques qui se déroulent au niveau cellulaire et que décrivent parfaitement les équations du mathématicien Alan Turing. Mais pas chez le lézard ocellé (Timon lepidus), comme l'indiquent ces travaux publiés dans la revue Nature.
Une équipe de biologistes, physiciens et informaticiens dirigée par Michel Milinkovitch, de l'Université de Genève (UNIGE) et de l'Institut suisse de bioinformatique (SIB), s'est penchée sur la transformation graduelle de la peau de ce lézard. Du brun chez le jeune, elle passe à un labyrinthe d'écailles vertes et noires chez l'adulte.
Cette observation ne correspond pas au mécanisme découvert en 1952 par Alan Turing, impliquant des interactions au niveau cellulaire. Pour comprendre pourquoi le patron de coloration s'organise à l'échelle des écailles plutôt qu'à celle des cellules biologiques, deux doctorantes, Liana Manukyan et Sophie Montandon, ont suivi la coloration de plusieurs lézards pendant quatre ans, depuis leur sortie de l'oeuf jusqu'à l'âge adulte. Elles ont reconstruit la géométrie 3D et la couleur du réseau d'écailles au moyen d'un système robotique à très haute résolution, développé précédemment dans le laboratoire du Pr Milinkovitch, a indiqué mercredi l'UNIGE dans un communiqué.

Premier cas chez un être vivant

Les chercheurs ont observé que non seulement les écailles changent de couleur du brun au noir ou au vert, mais qu'elles continuent, une fois le lézard adulte, de passer du noir au vert et du vert au noir. Cette observation étrange a poussé le Pr Milinkovitch à formuler une hypothèse: le réseau d'écailles forme un «automate cellulaire», un système computationnel ésotérique inventé en 1948 par le mathématicien John von Neumann.
Les automates cellulaires sont des réseaux abstraits dans lesquels chaque élément change d'état - en l'occurrence la couleur verte ou noire - en fonction de l'état des éléments voisins. Les éléments sont appelés «cellules», mais dans le cas des lézards, ils correspondent aux écailles et non aux cellules biologiques. Si ces automates ont été largement utilisés pour modéliser des phénomènes naturels, l'équipe de l'UNIGE a découvert ce qui semble être le premier cas de véritable automate de von Neumann apparaissant chez un être vivant.
L'analyse du changement de couleur sur quatre ans a permis aux chercheurs de confirmer l'hypothèse du professeur Milinkovitch: les écailles changent effectivement de couleur en fonction de la couleur des écailles voisines. Ce résultat est appuyé par des simulations informatiques utilisant cette règle mathématique et qui produisent des patrons de couleur identiques à ceux des vrais lézards.

Modèles superposés

Il fallait alors comprendre comment les deux modèles mathématiques se retrouvent liés chez le lézard ocellé. En particulier comment des interactions microscopiques entre des cellules pigmentaires, décrites par les équations de Turing, peuvent produire un automate de von Neumann exactement superposé aux écailles de la peau.
La peau du lézard n'est pas plate: très fine entre les écailles, elle est beaucoup plus épaisse en leur centre et cette variation d'épaisseur peut influer sur le mécanisme de Turing. Par le biais de simulations informatiques tenant compte de la géométrie de la peau, les chercheurs ont fait émerger un comportement d'automate de von Neumann. Ils ont ainsi démontré que les «automates cellulaires» comme systèmes de calcul ne forment pas simplement un concept abstrait imaginé par John von Neumann, mais correspondent également à un processus naturel généré par l'évolution biologique.

La boucle est bouclée

Malgré ce succès, les simulations restaient imparfaites, les mathématiques de Turing et celles de von Neumann étant très différentes. Michel Milinkovitch a fait alors appel au professeur de l'UNIGE Stanislav Smirnov, lauréat 2010 de la Médaille Fields en mathématiques.
Le Pr Smirnov modifia alors les équations de Turing pour établir un lien mathématique formel avec les automates de von Neumann. Anamarija Fofonjka, doctorante dans l'équipe du Pr Milinkovitch, a utilisé ces nouvelles équations de Smirnov dans des simulations informatiques, produisant un système indifférenciable d'un automate de von Neumann.
L'équipe multidisciplinaire bouclait ainsi la boucle de cette aventure scientifique, de la biologie à la physique, aux mathématiques, et retour à la biologie. (ats/nxp)

Source : Tribune de Genève

vendredi 28 avril 2017

La puissance organisatrice du hasard - Micmaths

mercredi 26 avril 2017

Comment calculer le 10’000’000’000’000’000’000 ème terme de la suite de Fibonacci

Tombé l’autre jour sur un problème idiot mais intéressant : calculer le 1019 ème terme de la suite de Fibonacci. Idiot parce que ça ne sert à rien. Intéressant parce que ça sous-entend qu’il existe une manière de calculer le n-ième terme de cette suite définie par récurrence sans calculer tous les termes précédents. En effet, calculer les termes les uns après les autres prendrait dans les 300’000 ans à raison d’une microseconde par terme…

Lire l'article du Dr Goulu sur son blog Pourquoi comment combien

samedi 22 avril 2017

Statistique bayésienne et archéologie

Nous présentons un modèle de statistique bayésienne permettant de construire une chronologie d’événements archéologiques. Ce type de modélisation permet d’intégrer à la fois des datations archéométriques, par exemple un âge radiocarbone, et l’ensemble des connaissances a priori telles que des dates historiques ou les relations stratigraphiques observées sur le site de fouille.

Lire l'article d'Anne Philippe et Marie-Anne Vibet sur Images des mathématiques.

vendredi 21 avril 2017

LQC - Quelles sont les lettres les plus utilisées dans un livre ?

jeudi 20 avril 2017

Le problème des deux oeufs

On vous donne deux œufs, et l'accès à un immeuble de 100 étages. Les deux œufs sont identiques. Le but est de trouver l'étage de plus élevé à partir duquel un œuf ne se brisera pas en tombant d'une fenêtre de l'étage.
Si un œuf est tombé sans se casser, il est en bon état et peut être réutilisé.
Si un oeuf chute de l'étage n et se casse, alors il se cassera aussi en tombant d'un étage plus élevé. Si un œuf résiste à une chute, il résistera à toute chute d'un étage inférieur.

Quelle stratégie adopter afin de minimiser le nombre de lâchers d'oeuf pour trouver l'étage le plus élevé (et quel est ce nombre de lâchers, dans le pire des cas) ?

La réponse se trouve sur la page The Two Egg problem.

jeudi 13 avril 2017

L'hypothèse de Riemann enfin démontrée ?

En l'an 2000, l'Institut de mathématiques Clay (États-Unis) a publié une liste de sept problèmes non résolus et qualifiés de « problèmes du millénaire ». Parmi eux, celui de l'hypothèse de Riemann est peut-être le plus célèbre. L'institut promet depuis une récompense d'un million de dollars à qui découvrira sa solution. Ira-t-elle bientôt à des chercheurs de l'université Brunel, à Londres (Royaume-Uni) ?

Lire l'article de Nathalie Mayer sur Futura Sciences.

mercredi 12 avril 2017

Sondages d’intention de vote: donnez-nous les marges d’erreur!

À moins de quinze jours du premier tour de la présidentielle, c'est la grande confusion.
Bien des débats agitent l’interprétation que l’on peut faire des sondages d’intention de vote et leur fiabilité. Que ce soit la méthode de collecte –par internet, par téléphone ou en face à face ; en auto-administration ou via un enquêteur ; en recevant des incitations matérielles à répondre ou pas, etc.–, la prise en compte ou non du degré de certitudes des répondants pour leurs choix, ou encore l’existence de phénomènes de sous-déclaration de la part d’enquêtés qui auraient une gêne à exprimer la réalité d’un choix qu’ils sauraient être mal vu dans la société.

Lire l'article d'Arnaud Mercier sur Slate.fr.

mardi 11 avril 2017

Enigmes sur les Carrés Magiques : gagnez 8.000 €

Le site www.multimagie.com propose, pour faire avancer douze problèmes non encore résolus sur les carrés magiques, douze prix pour un total de 8000 €. L'une de ces énigmes a été résolue en août 2016 par Sébastien Miquel. Cet étudiant en thèse a construit le plus petit carré magique connu qui soit à la fois additif et multiplicatif. Il s'agit d'un carré 7x7, de somme magique 465 et de produit magique 150'885'504'000. Sa découverte a nécessité 600 heures de calculs.

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 >