Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus ou, pourquoi pas, de créer leur propre blog...
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


dimanche 13 août 2017

Pythagore sous toutes ses formes (géométriques)

Plusieurs démonstrations géométriques du théorème de Pythagore.

Lire l'article sur Blogdemaths.

lundi 26 septembre 2016

Le paradoxe des anniversaires à l’Euro 2016

Vous avez sans doute déjà entendu parlé du paradoxe des anniversaires qui dit que dans un groupe de 23 personnes, il y a 50% de chances pour que deux d’entre elles soient nées le même jour de l’année (mais pas forcément la même année). Ça tombe bien, 23 c’est aussi le nombre de joueurs qui composent chaque équipe lors de l’Euro 2016 !

Lire l'article sur Blogdemaths

mercredi 27 juillet 2016

Le théorème du cercle arctique

mercredi 13 avril 2016

Le théorème des 4 couleurs — Science étonnante #4

lundi 4 janvier 2016

Tout nombre hexagonal est triangulaire

vendredi 21 août 2015

La découverte d'une "tuile" historique secoue le monde des mathématiques


SCIENCES - Une équipe de mathématiciens a bouleversé le monde des maths en découvrant un nouveau type de pentagone capable de "paver un plan", c'est-à-dire que les tuiles peuvent s'assembler sur une surface plane sans qu'elles ne se chevauchent ni ne laissent de trous.
Seuls quinze pentagones de ce type ont été découverts jusqu'ici. On n'en avait pas découvert depuis trente ans. C'est presque aussi impressionnant que de découvrir un nouvel atome, a déclaré Dr. Casey Mann, maître de conférences en mathématiques à l'université de Washington Bothell et membre de l'équipe.
L'équipe a fait cette découverte grâce à un programme informatique conçu pour l'occasion.
"Nous avons découvert la tuile en faisant une recherche exhaustive sur un ordinateur grâce à un ensemble de possibilités très large mais fini", a expliqué Casey Mann au journal Le Guardian, en ajoutant que l'équipe avait été "un peu surprise" de découvrir un nouveau type de pentagone. Avec lui, on retrouve le Dr. Jennifer McLoud-Mann, qui est également maître de conférences en mathématiques à l'université, et David Von Derau, récemment diplômé de cette même université.
En plus d'offrir une nouvelle façon de carreler son sol de salle de bains, Mann a déclaré que la découverte pourrait faire avancer la chimie et la biologie structurale – particulièrement dans l'étude des cristaux et dans l'auto-assemblage, un domaine en pleine expansion qui consiste à créer des structures qui s'assemblent de façon spontanée grâce à leur forme et leurs propriétés distinctes.


Le nouveau pentagone.

Bien sûr, les modèles de pavage (aussi appelé dallage) ont un intérêt estéthique considérable - tout du moins pour les mathématiciens.
"Nous les étudions principalement pour notre plaisir", a raconté Dr. Steven Strogatz, un mathématicien de l'université Cornell non impliqué dans la découverte, au Huffington Post. Il trouve que la nouvelle découverte est "cool" et fait remarquer que les dallages sont aussi présents dans les dessus-de-lit en patchwork, dans les motifs de papier peint et dans les nids d'abeilles, mais également dans les bâtiments tels que l'Alhambra et dans les gravures sur bois d' Escher comme celle-ci.
Cette nouvelle découverte vient complexifier un peu plus l'ensemble de faits connus sur les dallages et les polygones convexes (les conventionnels, avec les angles qui pointent tous vers l'extérieur).
Les mathématiciens ont prouvé qu'aucun polygone convexe possédant plus de six cotés ne peut paver un plan, selon Mann. Tous les triangles et les quadrilatères le peuvent, tout comme trois sortes d'hexagones.
Il est clair que les pentagones réguliers (ceux qui ont les côtés et les angles égaux) ne peuvent pas paver un plan. Selon Mann, on ne sait toujours pas non plus combien de sortes de pentagones irréguliers en sont capables. La découverte du nouveau ne change pas cette donnée.
"Après plus de 100 ans d'observation, nous ne savons toujours pas si nous avons découvert tous les types de pentagones convexes qui peuvent paver un plan", a-t-il affirmé dans l'e-mail. "C'est une énigme mathématique fascinante !"

Cet article a été publié sur le Huffington Post américain et traduit de l'anglais par Clémence Lecornué.
Lire aussi A five that fits par Marianne Freiberger dans la revue Plus.

mercredi 8 juillet 2015

Figures sans paroles

Chaque jour, les site Images des mathématiques vous propose une image-théorème-puzzle extraite du livre de Arseniy Akopyan : Geometry in Figures, 2011.
Cette figure sans paroles est délibérément présentée sans texte explicatif, ni énoncé. A vous de l’observer, la comprendre, de vous poser les questions qu’elle suggère et, si possible, les résoudre !

mardi 10 février 2015

La démonstration du théorème de Pythagore par James Garfield

James Abram Garfield (1831-1881), vingtième Président des Etats-Unis, a démontré le théorème de Pythagore en utilisant un trapèze :


L'aire du trapèze BCDE est : (a+b)(a+b)/2 = a2/2 + b2/2 + ab.
L'aire du quadrilatère BCDE est aussi la somme de l'aire des 3 triangles ABC, ACD, ADE. Or,
  • l'aire de ABC est : ab/2.
  • l'aire de ACD est : c2/2.
  • l'aire de ADE est : ab/2.
En égalisant les deux calculs, on trouve a2 + b2 = c2.

dimanche 12 janvier 2014

Top 10 des mathématiques religieuses

C'est dimanche. "Choux Romanesco, vache qui rit et intégrales curvilignes" vous soumet le top 10 des mathématiques religieuses.

vendredi 1 mars 2013

Conjecture de Goldbach : une démonstration (?) sur la table !

La conjecture de Goldbach a-t-elle été démontrée ? Je n'en ai entendu parler qu'il y a quelques jours, mais il semble que depuis 2011 une mystérieuse démonstration a été proposée. Mystérieuse car introuvable sur Internet jusqu'alors. Une partie de cette démonstration est désormais disponible sur rxiv.org.
En cherchant "Sambégou Diallo" sur Google, je me suis rendu compte que l'on parle depuis plus d'un an de cette découverte sur Les Mathématiques.net, et que cela suscite un intéressant débat. On s'interroge sur la validité de cette démonstration, surtout qu'elle fait appel à des outils relativement simples. On se demande dès lors pourquoi elle n'a pas été validée depuis...
J'ai aussi constaté que les médias africains ont très largement diffusé cette découverte (Découverte mathématique : Les exploits d’un surdoué guinéen , Un Africain dans la cour de grands, ...) , alors qu'ailleurs dans le monde, on en parle très peu, et pas forcément en bien (La conjecture de Goldbach a-t-elle été prouvée ? ).
Une affaire à suivre...

Ci-dessous un extrait d'un article du groupe Obamaths :

2011. Le guinéen Sambégou Diallo annonçait une découverte mathématique majeure. Il s’agissait de la résolution du plus célèbre casse-tête en maths : la conjecture de Goldbach, qui stipule que « Tout nombre pair est la somme de deux nombres premiers ». Telle est la colle qui persiste depuis 1742 et résiste à toutes les tentatives de résolution.
Le travail, de longue haleine, du Guinéen semble achevé. Pour ainsi dire, la conjecture de Goldbach, qui est une question de partitions d’entiers, n’aurait plus de secret pour lui. Et ce, grâce à une méthode qui transcenderait avec toutes celles déjà utilisées par la communauté. Reste plus que la vérification à l’échelle mondiale.
Les pages que vous allez découvrir ici sont une partie du document (27 pages sur un total de 60). Le Tout devrait être publié, espère-t-on au Groupe OBAMATHS, d’un moment à l’autre. Vous y trouverez la base de la démonstration, un processus bien élaboré, simple et surtout des formules asymptotiques qui n’utilisent que des outils connus de tous : le théorème des Nombres premiers en progression arithmétique et le principe d’inclusion-exclusion de Moivre, entre autres.
Après les Russes en 2011, les Sénégalais en 2012, la vérification est ainsi portée au niveau mondial afin d’en apprécier la solidité, la rigueur et la cohérence, ou, éventuellement, y déceler des failles susceptibles de remettre ce résultat en cause.

1 2 3 4 >