Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus ou, pourquoi pas, de créer leur propre blog...
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


lundi 31 décembre 2012

Défi Turing

L'année 2012 se termine. C'est passé totalement inaperçu pour les non-spécialistes, mais c'était l'année du centième anniversaire de la naissance d'Alan Turing. J'ai voulu apporter ma contribution à cet anniversaire en lançant aujourd'hui, dernier jour de 2012, le Défi Turing.

Le Défi Turing est directement inspiré du Project Euler, mais en français et pour des personnes ayant les connaissances mathématiques d'un lycéen. C'est une série de problèmes mathématiques et informatiques. Bien que les mathématiques permettront de trouver des méthodes élégantes et efficaces, l'utilisation d'un ordinateur et des compétences en programmation seront nécessaires pour résoudre la plupart des problèmes.
Aujourd'hui, pour débuter, le Défi Turing compte 20 problèmes. Un nouveau problème sera ajouté toutes les deux semaines. Le problème 21 sera mis en ligne le 6 janvier 2013.

A qui s'adresse ce défi ?

Ce défi est destiné aux programmeurs débutants, donc principalement aux lycéens, mais toutes les personnes intéressées par les énigmes mathématiques sont les bienvenues. L'idée de ce défi est de créer une base de données d'exercices de programmation stimulants. Un classement des participants sera disponible afin de créer une saine émulation.

Enseignants, n'hésitez pas à en parler à vos élèves d'informatique ! Cela sera pour eux une bonne source d'exercices.

Pour s'inscrire et participer : http://turing.nymphomath.ch
Pour suivre l'actualité du Défi Turing, il y a le compte Twitter : @DefiTuring
Plus d'informations se trouvent dans la FAQ : http://turing.nymphomath.ch/faq.html

dimanche 30 décembre 2012

Honneur binaire


Source : Les céréales du dimanche matin

samedi 29 décembre 2012

Le livre des 1001 blagues


Source : Les céréales du dimanche matin

vendredi 28 décembre 2012

Décès de Bruno Kostrzewa

Bruno Kostrzewa.
Ce nom ne vous dit probablement rien. Quand j'ai appris son décès sur le blog cours2maths.com, j'ai aussi eu une hésitation : je connais ce nom..., mais qui est-ce? Sans vraiment le savoir, j'étais un de ses lecteurs assidus, car il était notamment l'auteur du Twitter @mathoscope, de Labomath, de Livraison mathématique et de l'Almanach Mathématique. Autant de sources d'information que je consultais régulièrement et qui vont grandement me manquer pour mon propre blog.
Je voulais juste lui rendre hommage par ces quelques lignes.

jeudi 27 décembre 2012

Citation de Hilbert (4)


Si je devais me réveiller après avoir dormi pendant mille ans, ma première question serait : l’hypothèse de Riemann a-t-elle été démontrée?

David Hilbert

mercredi 26 décembre 2012

Comment savoir si une personne est a priori croyante ou athée (sans demander) ?

Vendredi 26 avril, sur France Inter, dans le jeu des milles euros, on a posé le petit problème mathématique suivant : Si une bonbonne pleine de lait pèse 25 kg et que la même bonbonne à moitié pleine (ou à moitié vide selon votre conception de la vie...) pèse 13 kg, combien pèse la bonbonne vide ? On vous laisse répondre * et on passe au sujet du jour.

Le prix Nobel Daniel Kahneman est persuadé (et persuasif) qu'il existe 2 systèmes principaux dans notre cerveau. L'un est intuitif, rapide (expéditif...), émotionnel et aime générer rapidement des causalités (même quand il s'agit de hasard pur), des histoires et adore les stéréotypes, se faire une idée sur un candidat politique juste à sa tête... ; il est la cible des agences de marketing. Le second est posé, calculateur, mathématique, énergivore ... et donc paresseux ; il regarde le prix au kg des produits au supermarché.
Kahneman cite un problème très simple de mathématiques. Il faut savoir que, pour ce problème a priori anodin, 80 % des élèves d'une université standard ont donné une fausse réponse (50 % d'une université d'élite comme Harvard...). Ce problème est similaire au précédent. Un pack « raquette + balle » coûte 1.10 dollar. Vous avez déjà une raquette et vous ne voulez acheter que la balle. Le vendeur ne se souvient plus du prix de la balle, mais il dit : « Je me souviens que la raquette coûte un dollar de plus que la balle ». Combien coûte la balle seule ? Il est très tentant de donner tout de go une réponse simple, « fingers in the nose ».
Des élèves ont été très surpris de trouver eux-mêmes, analytiquement, la bonne réponse ... contraire à leur intuition, au point d'écarquiller les yeux et de rester interdit une minute. En effet, dans un premier temps, c'est votre système 1 qui prend le contrôle (comme d'habitude). Si vous êtes du genre rationnel, vous allez vous méfier et prendre du recul et passer en mode « système 2 ». Vous allez devenir rationnel et donner la bonne réponse.
Des chercheurs vont plus loin. Selon votre aptitude à prendre ce recul ou non, on peut en déduire que vous êtes « analytique » ou non. Ce simple problème serait la clé pour détecter les « religieux » des autres. On a remarqué grâce à des tests et questionnaires avec 179 étudiants que les personnes analytiques sont moins susceptibles de croire en une religion. Ceux qui sont plutôt intuitifs pour aborder les problèmes de la vie sont plus susceptibles d'être croyants.
On a vérifié qu'il existe une base causale dans cette corrélation. On a subtilement essayé d'engager les volontaires à se mettre dans le mode « système 2 » par la suite. On montre par exemple une image du penseur de Rodin...
Les étudiants résolvent ensuite mieux les tests qui demandent de la réflexion. Cet effet accroît aussi la défiance par rapport aux religions. Plus on devient rationnel, moins on devient croyant (en moyenne). Ce n'est pas le seul facteur pour la croyance ou non d'un système religieux, mais c'en est un.
Maintenant, il faut réaliser que la notion de Dieu transcende les sens et la réflexion. La Science ne peut pas atteindre Dieu. On peut avoir l'instinct de Dieu, mais pas le démontrer. Il est donc « logique » que les scientifiques croient moins que les autres à Dieu. Ce n'est pas leur terrain habituel...

* (astuce imparable : poser les variables, écrire les deux simples équations à deux inconnues)

Pour aller plus loin : Will M. Gervais, Ara Norenzayan , Analytic Thinking Promotes Religious Disbelief Science 27 April 2012: 493-496. [DOI:10.1126/science.1215647]

Source : Sur-la-Toile

mardi 25 décembre 2012

Enigme de Noël

Lors de sa tournée, le père Noël arrive au manoir de Monsieur Math. En sortant du foyer de la cheminée, il remarque que le plancher est divisé en tuiles hexagonales portant des numéros. Un écriteau près du foyer donne cet avertissement :
« Avis aux intrus et au père Noël, le plancher de cette salle est piégé. Pour vous rendre au sapin, vous devez emprunter uniquement des tuiles dont le produit total donne 22!, les autres tuiles étant des pièges».
Le Père-Noël sait que 22! est la factorielle de 22, soit le produit des entiers de 1 à 22 (1×2×3×4×5×…×21×22), mais il ne sait pas quel chemin prendre. Aidez le père Noël à se rendre au sapin en lui indiquant les cases qu'il doit prendre et sachant qu'il ne peut pas sauter avec son gros sac de cadeaux.

lundi 24 décembre 2012

Et si le Père Noël se trompait ?

La vie de Père Noël n’est pas une sinécure. En plus d’avoir à apporter des cadeaux à des millions d’enfants avec des contraintes temporelles et physiques quasiment impossibles à remplir, il doit faire face à une angoisse terrible chaque année: apporter le bon cadeau au bon enfant. Signalons que le fait qu’il boive une bouteille de vodka avant chaque tournée pour se donner du courage (et se réchauffer) n’arrange en rien ce problème.
Et si le Père Noël se trompait complètement cette année ? Et s’il rendait tous les enfants de la Terre malheureux (sans exception) ? Plus précisément, la question à laquelle nous allons répondre dans cet article est la suivante: quelle est la probabilité qu’aucun enfant ne reçoive, le 25 Décembre au matin, le cadeau qui lui était destiné ? (ce qui serait tout de même une sacrée coïncidence…)

Lire l'article sur Blogdemaths

dimanche 23 décembre 2012

Monopoly, édition Alan Turing

Pour les 100 ans de la naissance d'Alan Turing, le musée de Bletchley Park a édité une version "Alan Turing" du Monopoly. Il est disponible à la boutique du musée.

samedi 22 décembre 2012

Mathématiques du jonglage

1 2 3 >