Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.

jeudi 12 septembre 2019

Caméléons tricolores

Une colonie de caméléons contient au départ 20 caméléons rouges, 18 bleus et 16 verts. Lorsque deux caméléons de couleurs différentes se rencontrent, chacun d’entre eux acquiert la couleur restante. Est-il possible qu’après un certain temps, tous les caméléons aient la même couleur ?

Réponse dans l'article de Patrick Popescu-Pampu sur Images des mathématiques

lundi 9 septembre 2019

Le problème des trois cubes enfin résolu

Décomposer un nombre en la somme de trois cubes, ce n'est pas toujours évident. Mais les mathématiciens étaient déjà parvenus à trouver des solutions pour tous les entiers inférieurs à 100. Sauf 42. C'est désormais chose faite.
C'est en 1954 qu'a été posé le problème des trois cubes de la façon suivante : tout nombre entier peut-il s'exprimer comme la somme de trois entiers relatifs élevés au cube ? Ou, dans une écriture plus mathématique, comment trouver x, y et z avec k compris entre 1 et 100 dans l'équation suivante : x3+y3+z3=k.
Les solutions les plus évidentes ont rapidement été trouvées par les chercheurs. Et peu à peu, toutes les valeurs de k ont pu être résolues ou démontrées insolubles. Seules deux valeurs de k continuaient de donner du fil à retordre aux mathématiciens. En début d'année, le professeur Andrew Booker, de l'université de Bristol (Royaume-Uni), a résolu l'énigme pour k=33 en s'appuyant sur des semaines de temps d'un supercalculateur. Mais pour résoudre l'équation pour k=42, l'opération s'annonçait encore plus délicate.
Alors Andrew Booker a fait appel à Charity Engine, une sorte d'ordinateur mondial qui exploite la puissance de calcul inutilisée de plus de 500'000 PC. Une solution qui a tout de même nécessité plus d'un million d'heures de calcul pour en arriver aux valeurs suivantes : x = -80'538'738'812'075'974, y = 80'435'758'145'817'515 et z = 12'602'123'297'335'631.
« Nous n'avions aucune certitude quant à ce que nous allions trouver. Un peu comme lorsque l'on essaie de prédire un séisme. Nous aurions aussi bien pu continuer à chercher cette solution pendant un siècle encore. Mais aujourd'hui, je me sens soulagé », indique Andrew Booker. Ne lui reste plus qu'à se pencher sur la dizaine de décompositions manquantes pour les k inférieurs à 1.000 !

Source : Nathalie Mayer, Futura

vendredi 16 août 2019

Annie... versaire

« Mon jour de naissance est un nombre entier J pouvant aller de 1 à 12, inférieur ou égal à mon mois de naissance M ». Cédric annonce ensuite qu’il va indiquer le jour à Alice et le mois à Bob. Une fois sa promesse tenue, Alice dit :
« Je sais que Bob ne peut pas connaître sa date d’anniversaire ».
Bob dit alors de même pour Alice. A tour de rôle, chacun des deux compères dit que l’autre ne peut deviner la date d’anniversaire à ce stade de l’information.
L’échange est le plus long possible, jusqu’au moment où Alice déclare « Bob va pouvoir la deviner, moi, je viens le faire ».
Quelle est la date d’anniversaire de Cédric ?


Annie, quant à elle, annonce que son mois de naissance est strictement inférieur à son jour de naissance, mais qu’ils se terminent tous deux par le même chiffre et qu’elle va donner l’un à Alice, l’autre à Bob, sans préciser lequel. 
Alice : « Je ne peux pas deviner, mais je sais que Bob non plus ».
Bob : « Effectivement, je ne peux pas deviner, mais je sais si le nombre que m’a confié Annie est le jour ou le mois »
Alice : « Alors je connais la date ».
Bob : « Moi aussi ».
Quelle est la date d’anniversaire d’Annie ?


Source : Affaire de Logique, Le Monde du 10.10.2018. La solution s'y trouve.

lundi 5 août 2019

Les deux bâtons


AB et CD sont deux pièces de bois verticales sur une surface horizontale AC.
AD est un élastique qui peut être étiré théoriquement aussi loin que vous le souhaitez.
BC est plus long que AD, mais possède les mêmes propriétés.
P est le point d'intersection des deux élastiques.

Démontrez que la hauteur P au-dessus de la surface horizontale reste constante peu importe la longueur AC (en supposant que les élastiques restent tendus).

Source : Quora (où se trouve aussi la réponse)

dimanche 28 avril 2019

Concours d'optimisation de l'ASRO

Le concours 2019 de l'ASRO est maintenant ouvert aux gymnasiens suisses !
Participez et gagnez des prix pour un montant total de 1'000 CHF.
Informations sur https://www.crowdai.org/challenges/cheese-hunting-for-swiss-highschool-students.
Date limite : 25 mai 2019.

mercredi 24 avril 2019

Des triangles rectangles presque isocèles… à la pelle !

Un triangle rectangle presque isocèle (TRPI) est un triangle dont tous les côtés ont des longueurs qui sont des nombres entiers, et tel que les deux côtés qui ne sont pas l’hypoténuse ont des longueurs qui diffèrent juste d’une unité (et qui sont donc presque égales, d’où l’appellation « presque isocèles »). Peut-on déterminer tous les TRPI ?

Lire le billet de blogdemaths

vendredi 22 février 2019

Des carrés magiques en cadeau

Les carrés magiques de nombres ce sont des beaux objets qui permettent de connecter les mathématiques avec une partie de leur histoire ; de plus, leur compréhension ne nécessite pas de connaissances trop élaborées. Ici on donne une voie peu conventionnelle d’approcher ces carrés à partir des systèmes d’équations linéaires. On verra comment la résolution d’une telle équation permet de construire son propre carré, avec sa date de naissance en première ligne !

Lire l'article d'Andrés Navas sur Images des mathématiques

mercredi 26 décembre 2018

Architect's cube

J'ai reçu pour Noël un Architect's cube. C'est comme un Rubik's cube, mais en plus design (surtout quand il est mélangé).

samedi 8 décembre 2018

Graphes 3

Cet article s’intéresse aux graphes dont les représentations dans le plan ne montrent pas de croisement d’arêtes en dehors de leurs sommets. Il s’intéresse aussi à la relation existant, dans ces graphes, entre le nombre de leurs sommets, le nombre de leurs arêtes et le nombre de régions que ces arêtes déterminent dans le plan. Il s’agit de la formule d’Euler pour les graphes planaires.

Lire l'article dans Images des mathématiques.

samedi 18 août 2018

Mot caché

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >