Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus ou, pourquoi pas, de créer leur propre blog...
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


dimanche 10 mars 2013

Graph Drawer

Une applet pour dessiner des graphes : Graph Drawer

jeudi 7 mars 2013

Un truc de math


Source : Les céréales du dimanche matin

mercredi 6 mars 2013

Une loi pour les gouverner tous – Les mathématiques des écosystèmes complexes

Dubendorf, 05.03.2013 - Des chercheurs de l’Eawag et de l’EPFL auraient découvert une loi universelle de distribution de la taille des organismes vivants. Si celle-ci s’avère valable pour tout le règne animal, elle pourrait influencer profondément notre manière de comprendre les dynamiques de population de vastes écosystèmes.

Une volée d’oiseaux, des bancs de poissons ou tout autre groupe d’organismes vivants pourraient avoir en commun une fonction mathématique. En étudiant les micro-organismes aquatiques, Andrea Giometto, un chercheur de l’EPFL et de l’institut de recherche Eawag, a montré que pour chaque espèce étudiée, la taille des micro-organismes se répartissait en fonction de la même expression mathématique, où la seule inconnue réside dans la taille moyenne des espèces dans un écosystème donné. Son article a été publié dans PNAS (Proceedings of the National Academy of Sciences) en mars 2013.
De nombreuses observations suggèrent que la fonction de distribution de la taille pourrait être universelle. Giometto a basé ses observations en laboratoire sur quatorze espèces de micro-organismes aquatiques, y compris des unicellulaires ou multicellulaires qui sont très éloignés d’un point de vue évolutif. Les micro-organismes qu’il a étudiés variaient de quatre ordres de grandeur, soit la différence en taille qu’il y a entre une souris et un éléphant.
En outre, la fonction mathématique décrivant la distribution de la taille se maintient même lorsque les espèces s’adaptent à un nouvel environnement – changements de température, présence ou absence de compétiteurs par exemple – en modifiant leur taille moyenne.
À partir de ces observations, Giometto et ses collaborateurs suggèrent que deux facteurs distincts travaillent de conserve pour former la distribution de la taille d’une espèce. D’abord, les facteurs environnementaux influencent la taille moyenne d’une espèce. Ensuite, des facteurs physiologiques ou la génétique engendrent la variabilité observée par rapport à la taille moyenne.

Des espèces aux communautés

Jusqu’à présent, l’attention s’est portée sur la répartition de la taille des individus pour une espèce donnée. Mais les recherches de Giometto deviennent particulièrement intéressantes dans le contexte d’une observation bien connue des scientifiques: « Si vous prélevez de l’eau de mer dans un verre et que vous analysez tous les micro-organismes qu’il contient, vous constaterez qu’aucune taille n’est sur- ou sous-représentée au sein d’une même espèce », rappelle Florian Altermatt, l’écologiste dans le team. Les mathématiciens appellent « loi de puissance » la façon dont la distribution de ces tailles peut être décrite.
Dans leur ensemble, ces observations qui concernent à la fois les distributions de la taille au sein d’une même espèce et au sein de toutes les espèces dans un écosystème donné ont des implications intéressantes. Si dans un certain milieu plusieurs espèces commencent à converger autour de la même taille, une force autorégulatrice se mettra en marche pour rétablir la loi de puissance, en agissant soit sur l’abondance de chaque espèce, soit sur sa taille.
Si, comme le pensent Giometto et ses coauteurs, ces observations sont valides au-delà des espèces qu’ils ont étudiées, ils pourraient fournir une preuve supplémentaire de l’existence de lois universelles qui gouvernent les écosystèmes naturels. Ces lois seraient susceptibles de gouverner la taille et l’abondance des organismes vivants, mais aussi d’autres propriétés, comme le nombre d’espèces qui coexistent.
La découverte de lois de puissance et leur utilisation pour décrire des systèmes complexes ont déjà donné des résultats concluants. « En physique, les lois de puissance ont été déterminantes pour la compréhension des transitions de phase. De la même manière, nous pensons que ces lois de puissance permettront de mieux comprendre la façon dont les écosystèmes sont organisés», précise Andrea Giometto, physicien, qui cherche à appliquer les méthodes de son domaine à la compréhension des systèmes biologiques complexes.

Source : admin.ch

mardi 5 mars 2013

Algèbre linéaire


Algèbre linéaire
Joseph Grifone
Éditions Cépaduès
4e édition (13 mai 2011)
448 pages


Présentation de l'éditeur
Cet ouvrage de référence présente un cours complet d'algèbre linéaire recouvrant les programmes du premier cycle des Universités et des classes préparatoires. L'algèbre linéaire a sans doute une place spéciale parmi les disciplines enseignées en premier cycle. D'une part parce qu'elle est utilisée pratiquement dans toutes les branches scientifiques : la physique, l'économie, la chimie, l'informatique... Sa connaissance fait partie du bagage indispensable au futur chercheur, ingénieur ou agrégatif. D'autre part en vertu de son caractère pédagogique, car l'algèbre et la géométrie se mêlent constamment et l'imagination est sans cesse sollicitée. L'auteur s'est efforcé de rédiger un ouvrage qui, sans sacrifier à la rigueur, présente les différents sujets avec clarté et simplicité. Dans cette nouvelle édition, l'auteur a ajouté des exercices et des problèmes, ainsi que de nouveaux appendices afin de mieux faire comprendre les relations étroites entre Algèbre Linéaire et Géométrie : une étude plus fine du groupe orthogonal, la description du groupe des isométries en dimension 3, une introduction aux groupes cristallographiques.

lundi 4 mars 2013

Magma

Magma est un logiciel de calcul formel destiné à résoudre des problèmes d'algèbre, de géométrie algébrique et de combinatoire. Il est disponible sur les systèmes d'exploitation Linux et Windows.

Site officiel

dimanche 3 mars 2013

Pour la Science 425 - Mars 2013

La dernière livraison du mensuel « Pour la science », qui consacre sa première de couverture aux « fractales lisses », nous propose plusieurs articles où les mathématiques sont largement présentes. Pour commencer l’éditorial nous invite à réfléchir sur les liens entre les mathématiques, les arts, la magie … Les passerelles avec le monde des arts sont nombreuses et anciennes. Souvent les magiciens ont appuyé leurs tours sur des connaissances mathématiques. Et si les « enjeux des mathématiciens et ceux des magiciens sont à l’évidence différents … certaines stratégies semblent les rapprocher ».

Des cartes bien mélangées : La rubrique mensuelle « Logique et calcul » fait justement le point sur un sujet passionnant (et qui est loin d’être épuisé), le mélange des cartes d’un jeu. Comment arriver à un désordre suffisant qui ne favorise aucune distribution et aucun joueur ? « Depuis plus d’un siècle que l’on cherche à comprendre comment il faut s’y prendre pour mélanger et distribuer les cartes avant de faire une partie de bridge, de poker ou de belote, on a percé quelques mystères et élaboré de beaux résultats. Mais soyons certains que d’autres pépites sont restées cachées et attendent que l’oeil puissant du théoricien les découvre » affirme Jean-Paul Delahaye.

A la une : Les fractales lisses, défis à l’impossible. Depuis l’annonce en avril des première image d’un tore plat en 3D (classé par La Recherche dans « Les 10 plus belles découvertes de l’année »), les articles sur le sujet se multiplient (voir sur ce site : Gnash, un tore plat ! ou Rothorn, un tore plat !). Celui qui vient d’être publié dans le numéro de mars du mensuel « Pour la science » est co-signé par trois des chercheurs de l’équipe Hévéa à laquelle on doit ces images : Vincent Borrelli Francis Lazarus et Boris Thibert. Le lecteur pourra ici comprendre la méthode mathématique qui permet de construire un tore plat, un domaine en pleine expansion. « Les fractales lisses, chaînon manquant entre les fractales et les surfaces ordinaires, vont probablement surgir dans d’autres questions mathématiques. Ces structures joueront-elles également un rôle en physique, en chimie ou dans les sciences du vivant ? Il est fort probable que certaines des structures fractales déjà observées dans le monde physique sont en réalité des fractales C1... et que l’on en découvrira d’autres. »

Les coniques selon Dürer : C’est la version française d’un article publié par Daniel Silver dans l’American Scientist. Après avoir brossé une biographie complète du grand artiste, l’auteur s’intéresse à ses « Instructions pour la mesure à la règle et au compas » (publiées en 1525 et 1538) dans lesquelles Dürer développe de nombreuses questions de géométrie. Mais l’artiste « croyait à tord que l’ellipse était plus large à la base du cône qu’en son sommet » et, par exemple, l’ellipse de la cloche du tableau « Mélancolia » était un ovale. Une autre erreur de Dürer dans la construction du foyer d’une parabole serait liée à une lecture incorrecte de Johannes Werner. Cependant cet article souligne surtout le fait qu’Albrecht Dürer a ouvert « un passage à double sens entre les mathématiques et l’art ».

La courbe antisecousse : Il s’agit de la clothoïde ou spirale de Cornu qui est très utilisée dans les ponts et chaussées lors des raccordements de trajectoires rectilignes et circulaires. Cet article de la rubrique « Idées de physique » nous montre comment cette courbe intervient dans la construction des bretelles d’autoroutes, dans la géométrie des voies des TGV, dans la construction des montagnes russes ou des sabots des pylônes de téléphériques pour assurer la sécurité et le confort des véhicules.

Source : Images des Mathématiques

samedi 2 mars 2013

Leonhard Euler et les bassins du roi de Prusse

Leonhard Euler, mathématicien suisse est l’auteur d’une œuvre considérable. Mais son travail l’a conduit à être aussi physicien, ingénieur, astronome et même philosophe. En 1748, le roi Frédéric II de Prusse lui confie la conception des jets d'eau de son palais de Sans-Souci. Il écrit : "Je voulus faire un jet d'eau dans mon jardin; Euler calcula l'effort des roues pour faire monter l'eau dans un bassin, d'où elle devait retomber par des canaux, afin de jaillir à Sans-Souci ». A partir de ce travail, Euler se propose de "rechercher les principes généraux sur lesquels toute la science des fluides est fondée", "de sorte que s'il y reste des difficultés, ce ne sera pas du coté de la mécanique, mais uniquement du coté de l'analytique". En établissant les "équations d'Euler", il donne une base mathématique toujours valable aujourd'hui à la Mécanique des fluides, une des sciences de la nature les plus importantes. C’est ce travail qui est abordé dans ce rendez-vous de Continent Sciences. Et cela dans le cadre du partenariat entre France Culture et la Société Mathématique de France, et la BNF, pour le Cycle de conférences 2013 dénommé « Un texte, un mathématicien ».

Ecouter l'émission sur France Culture

vendredi 1 mars 2013

Conjecture de Goldbach : une démonstration (?) sur la table !

La conjecture de Goldbach a-t-elle été démontrée ? Je n'en ai entendu parler qu'il y a quelques jours, mais il semble que depuis 2011 une mystérieuse démonstration a été proposée. Mystérieuse car introuvable sur Internet jusqu'alors. Une partie de cette démonstration est désormais disponible sur rxiv.org.
En cherchant "Sambégou Diallo" sur Google, je me suis rendu compte que l'on parle depuis plus d'un an de cette découverte sur Les Mathématiques.net, et que cela suscite un intéressant débat. On s'interroge sur la validité de cette démonstration, surtout qu'elle fait appel à des outils relativement simples. On se demande dès lors pourquoi elle n'a pas été validée depuis...
J'ai aussi constaté que les médias africains ont très largement diffusé cette découverte (Découverte mathématique : Les exploits d’un surdoué guinéen , Un Africain dans la cour de grands, ...) , alors qu'ailleurs dans le monde, on en parle très peu, et pas forcément en bien (La conjecture de Goldbach a-t-elle été prouvée ? ).
Une affaire à suivre...

Ci-dessous un extrait d'un article du groupe Obamaths :

2011. Le guinéen Sambégou Diallo annonçait une découverte mathématique majeure. Il s’agissait de la résolution du plus célèbre casse-tête en maths : la conjecture de Goldbach, qui stipule que « Tout nombre pair est la somme de deux nombres premiers ». Telle est la colle qui persiste depuis 1742 et résiste à toutes les tentatives de résolution.
Le travail, de longue haleine, du Guinéen semble achevé. Pour ainsi dire, la conjecture de Goldbach, qui est une question de partitions d’entiers, n’aurait plus de secret pour lui. Et ce, grâce à une méthode qui transcenderait avec toutes celles déjà utilisées par la communauté. Reste plus que la vérification à l’échelle mondiale.
Les pages que vous allez découvrir ici sont une partie du document (27 pages sur un total de 60). Le Tout devrait être publié, espère-t-on au Groupe OBAMATHS, d’un moment à l’autre. Vous y trouverez la base de la démonstration, un processus bien élaboré, simple et surtout des formules asymptotiques qui n’utilisent que des outils connus de tous : le théorème des Nombres premiers en progression arithmétique et le principe d’inclusion-exclusion de Moivre, entre autres.
Après les Russes en 2011, les Sénégalais en 2012, la vérification est ainsi portée au niveau mondial afin d’en apprécier la solidité, la rigueur et la cohérence, ou, éventuellement, y déceler des failles susceptibles de remettre ce résultat en cause.

jeudi 28 février 2013

Un peu de mathémagie avec Flavius Josèphe

Sans avoir l’air d’y toucher, un tour de magie avec quelques cartes permet d’illustrer les notions de permutation ou de cycle. Les mathématiques deviennent source d’inspiration pour des tours de magie et on peut alors se prendre au jeu d’analyser les astuces des magiciens.
Les tours de magie avec des cartes à jouer peuvent grossièrement se classer en deux grandes catégories.

  • La première se base sur la dextérité du magicien. A force d’entraînement, ce dernier arrive à dissimuler ou faire apparaître habilement la carte de son choix.
  • La deuxième catégorie repose sur les propriétés des mélanges et arrangements de cartes. Dans cet article, nous allons illustrer cette dernière à l’aide du mélange de Josèphe.
Lire l'article sur Images des Mathématiques

mercredi 27 février 2013

Accromath (Volume 8 - Hiver-printemps 2013)

Le dernier numéro d'Accromath (Volume 8 - Hiver-printemps 2013) est sorti. Rappelons qu'Accromαth est une revue semi-annuelle produite par l'Institut des sciences mathématiques et le Centre de recherches mathématiques. S'adressant surtout aux étudiants et enseignants d'école secondaire et de cégep, la revue est distribuée gratuitement dans les écoles secondaires et les cégeps du Québec.
Accromath est partenaire de "Mathématiques de la planète Terre 2013" (MPT 2013). Cette initiative internationale, sous le patronage de l'UNESCO, souligne le rôle essentiel des mathématiques dans la compréhension de notre planète et de ses écosystèmes et dans la recherche de solutions pour la protéger. Accromath publiera donc deux numéros spéciaux en 2013 sur le thème des mathématiques de la planète Terre.

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 >