Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


lundi 16 février 2009

L'addition magique

On m'a signalé sur le merveilleux site de Thérèse Eveilleau un tour de magie étonnant : l'addition magique.

dimanche 15 février 2009

954 est self replicating

Lu dans "Ces nombres qui nous fascinent" :

954 est le seul nombre de trois chiffres qui soit "self replicating" : un nombre n dont tous les chiffres sont distincts et décroisssants est dit "self replicating" si, lorsqu'on inverse ses chiffres et qu'on soustrait le nouveau nombre du nombre n, on obtient un nombre dont les chiffres sont les mêmes que ceux qu'on retrouve dans n (954-459 = 495). Aucun nombre de 1, 2, 5, 6 ou 7 chiffres ne satisfait cette propriété. Selon Gardner, 954, 7641, 98'754'210, 987'654'321 et 9'876'543'210 sont les seuls nombres qui satisfont cette propriété.

samedi 14 février 2009

Tangram coeur

vendredi 13 février 2009

Ces nombres qui nous fascinent


Ces nombres qui nous fascinent (Broché)
de Jean-Marie De Koninck
Ellipses (2008)

Présentation de l'éditeur
Depuis des milliers d'années, l'être humain est fasciné par les nombres entiers, qu'il s'agisse des nombres premiers de Mersenne, des nombres parfaits, des nombres de Fermat ou, plus récemment, des nombres puissants et des nombres premiers de Wieferich. La découverte de nouveaux nombres avec des propriétés étonnantes suscite l'intérêt tant du mathématicien novice que du chercheur érudit. De surcroît, l'avènement des ordinateurs a permis de mettre en évidence des nombres avec des caractéristiques particulières tout à fait inattendues. Par ailleurs, la conquête de nombres aux attributs exceptionnels est souvent l'occasion de soulever de nouveaux problèmes et, par conséquent, d'ouvrir de nouvelles avenues de recherche en théorie des nombres. Dans le présent ouvrage, Jean-Marie De Koninck propose aux étudiants et enseignants des niveaux collégial et universitaire, de même qu'au mathématicien amateur en quête de divertissement, l'exploration de plus de 2 600 nombres, tout aussi fascinants les uns que les autres, soit par leur caractère unique, soit par leur aspect ludique.

Biographie de l'auteur
Jean-Marie De Koninck est l'auteur de 85 publications mathématiques, dont sept livres. Pour avoir conçu Show Math, un spectacle multimédia, et Math en jeu, un logiciel accessible gratuitement sur Internet, la société Radio-Canada l'a nommé " scientifique de l'année 2005 ".

jeudi 12 février 2009

La vache - La finance

mercredi 11 février 2009

Une horloge pour les matheux (2)

mardi 10 février 2009

Factoriser le temps

En voyant le strip ci-dessous, quelqu'un a eu l'idée de programmer une horloge qui donne la décomposition en facteurs de l'heure.

lundi 9 février 2009

Le bâton plutôt que la carotte

Le bâton plutôt que la carotte ? Aussi étonnant que cela puisse paraître, ce serait en effet une bonne méthode pour une stratégie sur le long terme à l'échelle d'une équipe devant coopérer.

Des expériences antérieures de modèles évolutionnistes comparant coopération altruiste et punition avaient montré que les coûts des punitions par rapport aux gains d'une coopération laissaient penser que punir n'était pas une option viable.
Pour les chercheurs de l'université de Nottingham, c'est sûrement vrai ... si l'expérience ne dure pas suffisamment longtemps. Ces chercheurs ont donc regardé sur une plus longue échelle de temps, si la punition ne pouvait pas finalement améliorer la coopération.
Ils ont ainsi organisé des séries d'expériences concernant le bien public. Ils ont donné à des groupes de 3 personnes, 20 pièces que ces personnes pouvaient garder afin de contribuer au bien public. Chaque pièce valait une unité monétaire UM au détenteur et chaque pièce investie valait 0.5 UM pour chaque membre du groupe.
La règle était que les volontaires pouvaient choisir de donner un UM en échange de la déduction de 3 UM d'un bénéfice d'un autre membre du groupe : une manière de le punir si un volontaire jugeait qu'un autre n'avait pas suffisamment investi pour le bien du groupe.
L'expérience a donc été divisée en deux périodes de temps et reproduite entre court terme, 10 fois ou long terme, 50 fois. On a d'ailleurs réalisé cette expérience soit avec l'option de punition soit sans. Les résultats furent clairs : les résultats de la coopération étaient meilleurs lorsque les joueurs avaient la possibilité de punir les autres.
Cela s'explique par le fait que les gens punissent ceux qui pensent « solo » et cela renforce au final la cohésion du groupe total. Il était manifeste que les gens réagissent différemment selon qu'ils jouent sur le court terme ou le long terme, car la menace de punition était moins forte dans un jeu court terme.
Il était clair que la punition était peu usitée : c'est surtout la présence de la menace qui permet de recadrer le groupe dans le bon chemin de la coopération.
Il y a enfin une manifestation émotionnelle de la présence de cette punition : on voyait par exemple la punition s'exercer dans la dernière itération du jeu (quand cela n'a plus d'effet concret), juste pour faire la leçon à ceux « qui se la jouaient perso ».
Un effet paradoxal du point de vue logique pure mais souvent vérifié dans le cadre de la théorie du jeu.

Source : Sur-la-Toile

dimanche 8 février 2009

Le château d'eau des Essarts-le-Roi

La première structure hyperboloïde au monde - la tour de treillage de claire-voie d'acier située actuellement à Polibino (oblast de Lipetsk, Russie), construite pour l'exposition de Nijni Novgorod de 1896 - est l'œuvre de l'ingénieur et scientifique russe Vladimir Choukhov. Les structures hyperboloïdes ont été par la suite utilisées par beaucoup d'architectes réputés : Antoni Gaudí, Le Corbusier, Oscar Niemeyer. Voici un superbe exemple :


Château d'eau des Essarts-le-Roi (Yvelines, France)

samedi 7 février 2009

Vladimir Choukhov et ses structures hyperboloïdes

Vladimir Grigorievich Choukhov (en russe : Владимир Григорьевич Шухов) (1853-1939) était un grand ingénieur et architecte russe, célèbre pour ses travaux pionniers, à tel point qu'il est parfois surnommé l'Edison russe. Ses innovations principales portent sur le génie civil et l'industrie pétrolière: construction du premier oléoduc en 1878, invention du craquage thermique en 1891, et surtout conception et réalisation des premières structures hyperboloïdes. Plusieurs tours hyperboloïdes en Russie portent encore son nom, notamment à Moscou et près de Nijni Novgorod.


La première structure hyperboloïde du monde: la Tour Choukhov de Nijni Novgorod en 1896

Pour en savoir plus : Wikipédia

< 1 2 3 >