Le blog-notes mathématique du coyote

 

Extra

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.

vendredi 10 juillet 2020

Mathématiques d'école


Mathématiques d'école : Nombres, mesures et géométrie
Daniel Perrin
Cassini, 2e édition revue et corrigée (30 novembre 2011)
402 pages


Présentation de l'éditeur
Les mathématiques d'école dont nous parle Daniel Perrin sont celles de tout le monde : nombres, géométrie, aires, volumes. Nous sommes familiers avec ces notions depuis notre plus tendre enfance, et pourtant elles présentent des difficultés inattendues dès qu'on veut les cerner d'un peu plus près. Cela n'avait pas échappé aux Grecs de l'Antiquité, qui s'étaient attachés à donner de ces notions des définitions précises, et qui en avaient établi les propriétés avec un souci de rigueur qui nous déconcerte parfois aujourd'hui. Mais ils le savaient : sinon, gare au paradoxe ! Ces difficultés, bien sûr, doivent être soigneusement cachées aux élèves de l'école élémentaire et du collège, mais pas à leurs maîtres qui doivent savoir si, oui ou non, 0,999... = 1 (la question leur est souvent posée), ou pourquoi le nombre pi qui intervient dans le périmètre du cercle est aussi celui qui figure dans l'aire du disque. Les notions premières, celles que chaque enseignant doit maîtriser, sont donc ici justifiées, expliquées, commentées dans un exposé agréable (les démonstrations un peu arides sont reportées en annexe) et qui ne s'écarte jamais du terrain très concret choisi au départ. Mais les mathématiques ne se limitent pas à cette exigence de rigueur intellectuelle. Le plaisir de la recherche et la joie de la découverte en sont des composantes essentielles. Partant d'un niveau élémentaire (les mathématiques du baccalauréat scientifique), le livre de Daniel Perrin nous entraîne très loin dans la redécouverte des nombres et de la géométrie. On y rencontre les mystères des nombres premiers ou de l'écriture décimale des fractions, on y explique la beauté des constructions à la règle et au compas, ou les secrets des découpages des polygones, on y découvre les patrons des polyèdres ou la merveilleuse formule d'Euler.
Le lecteur pourra satisfaire son goût de la recherche en se confrontant à plus de 200 exercices, tous passionnants, tous corrigés, et à une cinquantaine de problèmes. Né d'un cours pour les futurs professeurs d'école (dans le cadre de la licence pluridisciplinaire d'Orsay), ce livre s'adresse aussi aux professeurs du second degré et à tous les étudiants en mathématiques.

jeudi 2 juillet 2020

C.Q.F.D. : 21 façons de prouver en mathématiques


C.Q.F.D. : 21 façons de prouver en mathématiques
Yan Pradeau
Flammarion (26 février 2020)
383 pages

Présentation de l'éditeur
Les mathématiques semblent le champ le plus solide du savoir scientifique : "C'est prouvé par a + b." A cette certitude correspondent pourtant non pas une, mais d'innombrables façons de démontrer ― on compte par exemple plus de 300 preuves du théorème de Pythagore : par l'absurde, par contre-exemple, par récurrence, etc. Une redondance d'autant plus troublante que certaines sont jugées plus solides que d'autres... Qu'est-ce que prouver et comment s'y prend-on ? Comment lever les paradoxes de l'infini ? Pourquoi faut-il des axiomes ? Quel crédit accorder à un théorème établi par ordinateur ? Dans cet essai, Yan Pradeau lève le voile sur une activité essentielle des mathématiciens. Une fois n'est pas coutume, il détaille non leurs résultats, mais les chemins qui y mènent. Quand on sait depuis Gödel que tout ce qui est vrai n'est pas forcément prouvable, on mesure l'utilité de cet ouvrage.

Voir aussi des vidéos de l'auteur sur le site de Flammarion.