Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


mercredi 30 mai 2012

La difficile ascension vers la résolution d'un problème mathématique

Pour un mathématicien, avancer à petits pas ne signifie pas forcément se rapprocher du but. Ainsi, l'un des plus brillants chercheurs de cette discipline, Terence Tao (université de Californie), vient d'apporter sa pierre à la résolution d'un problème mythique de sa discipline, la conjecture de Goldbach. Mais sans pouvoir affirmer l'avoir totalement résolue.
Ce problème remonte au XVIIIe siècle, lorsque le mathématicien Christian Goldbach défie son collègue Leonhardt Euler en estimant peu ou prou que tout nombre entier pair peut s'écrire comme la somme de deux nombres premiers. Par exemple, 30 = 13 + 17 ou 90 = 17 + 73. Ou encore, que tout nombre entier impair peut s'écrire comme la somme de trois nombres premiers. Ainsi, 179 = 19 + 71 + 89. Les nombres premiers ne sont divisibles que par un et eux-mêmes et constituent en quelque sorte les briques élémentaires de la théorie des nombres.

"Cette conjecture est très importante. Elle est simple à énoncer et pourtant touche à un problème fondamental : comment se combinent, pour les nombres, les deux opérations de base, la somme et la multiplication [qui est liée aux nombres premiers]", explique Gerald Tenenbaum, de l'institut Elie-Cartan de Nancy, spécialiste de la théorie des nombres.
Ce problème n'est pourtant pas l'un des sept mis à prix un million de dollars par la fondation Clay en 2000. Il a néanmoins un rapport avec l'un deux, l'hypothèse de Riemann, qui donne la clé de la répartition de ces atomes des mathématiques que sont les nombres premiers. Si cette autre conjecture est vraie, alors l'énoncé de Goldbach pour les nombres impairs s'en déduirait par exemple.

"NOUS NE POURRONS PAS ALLER JUSQU'À LA DÉMONSTRATION FINALE"

C'est dans ce contexte que Terence Tao, médaillé Fields en 2006 (récompense suprême en mathématiques), a démontré que tout entier impair peut se décomposer en cinq nombres premiers. Ce qui est donc un petit peu mieux que le précédent "record" d'Olivier Ramaré, de l'université de Lille et du CNRS, qui, il y a presque vingt ans, avait établi que tout nombre pair se décompose en six nombres premiers.
L'Américain a soumis cet article en février à une revue spécialisée pour expertise et publication, mais le magazine Scientific American l'a sorti de la confidentialité le 11 mai, repris par le site Web de la revue Nature. Le prestige de l'auteur et la méthode utilisée ne laissent guère de doute sur la solidité du travail, qui devrait donc être prochainement validé. Ce dernier reste modeste : "C'est un progrès incrémental dans la recherche sur la conjecture de Goldbach, mais pas une révolution", nous a-t-il écrit.
Le problème avec cette conjecture est que s'il semble possible d'atteindre les étapes suivantes, quatre nombres premiers, puis trois, la dernière restera inaccessible. "Avec la méthode que j'avais utilisée et que Terence Tao poursuit, nous savons que nous ne pourrons pas aller jusqu'à la démonstration finale. Il y a un obstacle théorique, constate Olivier Ramaré. On a même du mal à s'approcher d'une méthode différente permettant d'aborder cette ultime question. Peut-être qu'on ne verra pas la démonstration avant mille ans !"

"Ces travaux sont cependant intéressants, car pour aborder la démonstration finale, nous avons besoin de comprendre les entiers et les nombres premiers. Les outils et méthodes développés dans des cas plus 'simples' pourront donc être utiles. On ne sait jamais", poursuit le chercheur.

Source : David Larousserie - Le monde - 22 mai 2012

mardi 28 février 2012

Lemme de Burnside (2)

Le lemme de Burnside... Outre le fait qu'il n'est pas dû à Burnside et qu'on peut le considérer autrement qu'un lemme, ce résultat obscur de la théorie des groupes permet de faire des choses hallucinantes ! Si si ! Il permet par exemple de compter le nombre de colliers que l'on peut faire avec 3 perles rouges, 3 perles bleues et 5 perles vertes. Il permet aussi de compter le nombre de colliers que l'on peut faire avec 6 perles jaunes, 3 perles bleues, une perle verte et une perle rouge.
Il permet en fait de répondre à n'importe quel problème de dénombrement avec des perles ! (et certains problèmes sans perle : combien y a-t-il de façons de partager un paquet de Vache qui rit (aux isométries près) entre 3 personnes, combien existe-t-il de sudokus réellement différents, etc.). Le lemme de Burnside est l'exemple typique de l'énoncé abstrait d'un domaine abstrait qui trouve des applications concrètes dans des domaines concrets (pour peu que l'on aime fabriquer des colliers).

Lire l'article sur Choux Romanesco, vache qui rit et intégrales curvilignes.

jeudi 12 janvier 2012

Les vagues des pendules

"La période d'un pendule est proportionnelle à la racine carrée de la longueur de la ligne suspendant le poids. Ce qui signifie que plus long est le pendule, plus lentement il se balance." Les étudiants de Cambridge ont construit un dispositif avec une série de 15 pendules alignés, chacun légèrement plus long que son voisin, les ont ensuite mis en mouvement et ont filmé le résultat.


Merci à Jean-Pol pour m'avoir signalé cette vidéo.

samedi 26 novembre 2011

Maths : Cartographie d'un point fixe

Pendant près de cinquante ans les mathématiciens se sont cassé les dents sur un théorème dit du point fixe. Une équipe basée à l’EPFL a trouvé une solution élégante qui tient en une page et ouvre de nouvelles perspectives.
Prenez une carte du monde. Posez-la sur le gazon de Central Park à New York, contre les rochers de l’Everest ou sur la table de votre cuisine : il y aura toujours un point de la carte qui sera superposé exactement au lieu qu’il représente dans la réalité. Une évidence ? Pas pour les mathématiciens : un théorème plus complexe, dit du « point fixe », leur résistait depuis 1963.

Lire la suite sur le site de l'EPFL

mercredi 14 septembre 2011

La plus longue démonstration de l'histoire

On vient de terminer la plus longue démonstration jamais entreprise. Le travail a commencé en 1971. Une bonne centaine de mathématiciens y a participé. C'est Michel Aschbacher qui va recevoir pour cela une récompense (The Rolf Schock Award in Mathematics). En effet, en 2004, il a trouvé une faille dans "le théorème énorme" de 15'000 pages et la correction a requis la publication d'un guide de 1200 pages supplémentaires.
Le théorème à démontrer concernait la classification des groupes finis simples.

Source : io9.com

vendredi 27 mai 2011

La géométrie euclidienne serait universelle

Des tests donnés à une tribu amazonienne nommée Mundurucu suggèrent que nos intuitions sur la géométrie sont innées (et donc indépendante de la culture et du langage). Les chercheurs se sont débrouillés pour voir comment cette tribu réagirait à des problèmes impliquant des lignes, des points et des angles et de comparer les résultats avec des tests réalisés par des enfants américains et français.
Évidemment, cette tribu n'a pas de vocabulaire « droite, ligne, plan, etc. » (ne parlons même pas de triangle ou de rectangle). Il a fallu recourir à des exemples et astuces comme des distances avec les villages voisins. Dans nos sociétés issues de la culture grecque, on a tendance à croire que la géométrie euclidienne (des propositions comme « entre deux points ne passe qu'une droite et une seule ») est apprise dans le cadre scolaire.
Eh non ! Des questions similaires ont eu des résultats similaires.
Résultat : il ne semble pas y avoir de causalité entre langage et interprétation géométrique. Pire : notre éducation forcée de type « euclidienne » est ensuite tellement ancrée que cela fait que nous avons du mal à nous familiariser avec la géométrie non-euclidienne. Ironie : cela n'est pas un problème pour la tribu Mundurucu qui a montré une plus grande facilité avec le concept de géométrie non-euclidienne (qui est à la base de la relativité générale d'Einstein quand même...)

Sources : Sur-la-Toile, BBC

mardi 1 février 2011

Un vieux problème de maths résolu par les fractales

En mathématiques, une partition d'un entier est une décomposition de cet entier en une somme d'entiers strictement positifs (appelés parties). Une telle partition est en général représentée par la suite des termes de la somme, rangés par ordre décroissant. Exemple : le nombre 3 peut s'écrire 3 ou 2+1 ou 1+1+1. Pour 10, on arrive à 42 partitions. Pour 100, plus de 190 millions...
Depuis le dix-huitième siècle, des générations de mathématiciens ont essayé de prédire ces partitions. Un génie autodidacte, Srinivasa Ramanujan, avait trouvé une méthode pour trouver une approximation de ces partitions en 1919. Il voulait aller plus loin et donner une équation précise, mais il est malheureusement décédé à l'âge de 32 ans. Des mathématiciens modernes ont repris ses manuscrits et ce n'est que maintenant que ces derniers ont trouvé le GRAAL, dans une sorte de révélation intellectuelle que seuls ces gens peuvent vivre. Il s'avère que le schéma est de type fractal.
Le chercheur Ken Ono et son équipe ont donc trouvé une fonction nommée P qui permet de donner lke nombre de partitions de n'importe quel nombre. Adieu les codes et programmes sécurisés qui se fondaient sur cette base mathématique...

Source : Sur-la-Toile

jeudi 12 août 2010

Le nombre de Dieu est 20 !

Quelle que soit la position de départ parmi les 43'252'003'274'489'856'000 existantes, les six faces d’un cube peuvent être unifiées en 20 mouvements ou moins.
Ce nombre – appelé nombre de Dieu – tenait en haleine les mathématiciens amateurs de théorie des groupes depuis trente ans et vient d'être établi avec certitude par Morley Davidson, John Dethridge, Herbert Kociemba et Tomas Rokicki. La première estimation, datant de 1981, était de 52.

Sources : cube20.org, Nouvo

jeudi 17 juin 2010

Kissing circles

Il existe deux cercles tangents (l'un intérieurement et l'autre extérieurement) à trois cercles mutuellement tangents : ce sont les cercles de Soddy qu'il a joliment appelé "kissing circles". Les courbures (inverses des rayons) des cercles de ces deux quadruplets vérifient la relation de Descartes suivante :
2 (c12+c22+c32+c42) = (c1+c2+c3+c4)2

Quelques liens sur le sujet :

vendredi 8 mai 2009

Combien de rectangles y a-t-il dans un quadrillage ?

Soit un quadrillage formé de L lignes et C colonnes. Le nombre de rectangles que l'on peut tracer est :


Ainsi, il y a 18 rectangles possibles sur un damier de dimensions 2x3 :


Voilà une formule qui m'a été bien utile pour m'attaquer au problème 85 du Project Euler.

< 1 2 3 4 >