 | Travaux en mathématiquesJacobi a écrit le traité classique sur les fonctions elliptiques, d'une importance capitale en physique mathématique pour l'intégration des équations du second ordre tirées de la conservation de l'énergie cinétique.
Jacobi est aussi le premier mathématicien à appliquer les fonctions elliptiques à la théorie des nombres, prouvant par exemple la théorie du nombre polygonal de Pierre de Fermat. Il donne de nouvelles preuves de la loi de réciprocité quadratique, et y apporte des généralisations ; pour ce faire, il introduit ce qui aujourd'hui est connu sous le nom de sommes de Jacobi. La fonction theta de Jacobi, si fréquemment appliquée dans l'étude des séries hypergéométriques, porte son nom. Il en a donné l'équation fonctionnelle.
Ses recherches dans les fonctions elliptiques, théorie pour laquelle il établit de nouvelles bases, et plus particulièrement le développement de la fonction theta, apparaissent dans ses grands traités Fundamenta nova theoriæ functionum ellipticarum (Königsberg, 1829), et dans les articles ultérieurs du Journal de Crelle. Elles constituent l'une de ses plus grandes découvertes dans le domaine de l'analyse mathématique. Dans une autre branche des mathématiques, il a mené des recherches approfondies sur les équations différentielles, en particulier la théorie du dernier multiplicateur, laquelle est soigneusement traitée dans son Vorlesungen über Dynamik, édité par R. F. A. Clebsch (Berlin, 1866).
C'est surtout en analyse que Jacobi apporte de nombreuses contributions, avec des applications aux autres domaines des mathématiques, comme le montre la longue liste de ses publications dans le Journal de Crelle ou dans d'autres journaux. Il est l'un des fondateurs de la théorie des déterminants. En particulier, il invente le déterminant de la matrice (dite jacobienne) formée par les n2 dérivées partielles de n fonctions données de n variables indépendantes. Son déterminant, le déterminant jacobien est crucial dans le calcul infinitésimal.
L'identité de Jacobi apparaît dans l'étude des algèbres de Lie ; le jacobien est incontournable dans l'étude des équations différentielles ; le symbole de Jacobi est toujours utilisé en théorie des nombres et même en cryptographie (domaine postérieur au XIXe siècle). |