Ce blog a pour sujet les mathématiques et leur enseignement
au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de
classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la
génération zapping de nos élèves. Ces textes courts
et ces vidéos, privilégiant le côté ludique des maths,
pourront, je l'espère, les intéresser et leur donner l'envie d'en
savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute
la francophonie.
Par Didier Müller,
mardi 18 janvier 2022 à 06:32
-Livres/e-books
Récoltes et semailles
Alexandre Grothendieck
Gallimard (13 janvier 2022)
Présentation de l'éditeur
Considéré comme le génie des mathématiques de la seconde moitié du XXᵉ siècle, Alexandre Grothendieck est l'auteur de Récoltes et semailles, une sorte de "monstre" de plus de mille pages, selon ses propres termes. Le tapuscrit mythique, qui s'ouvre sur une critique acerbe de l'éthique des mathématiciens, emmènera le lecteur jusque dans les territoires intimes d'une expérience spirituelle après l'avoir initié à l'écologie radicale.
Dans cette tresse littéraire s'entremêlent plusieurs récits, "un voyage à la découverte d'un passé ; une méditation sur l'existence ; un tableau de moeurs d'un milieu et d'une époque (ou le tableau du glissement insidieux et implacable d'une époque à une autre...); une enquête (quasiment policière par moments, et en d'autres frisant le roman de cape et d'épée dans les basfonds de la mégapolis mathématique...) ; une vaste divagation mathématique (qui en sèmera plus d'un...) ; [...] un journal intime ; une psychologie de la découverte et de la création ; un réquisitoire (impitoyable, comme il se doit...), voire un règlement de comptes dans “le beau monde mathématique” (et sans faire de cadeaux...)"
Il faut savoir que la bouteille de vin a été standardisée au XIXème siècle. Ainsi vous pouvez encore trouver sur l’étiquette 73 cl sur de très anciennes bouteilles. Elles avaient alors une contenance de 75 cl. Mais lorsqu’ils mettaient le bouchon, la bouteille débordait et 2 cl étaient perdus. Aujourd’hui on affiche 75 cl sur les bouteilles de vin; sans le bouchon la contenance serait de 77 cl.
Les bouteilles de vin ont été standardisées à 75 cl car à l’époque, les principaux clients des domaines viticoles français sont les anglais. Mais la différence de mesure entre les anglais et les français est un soucis pour les échanges. Le système de mesure des anglais est le gallon impérial ce qui équivaut précisément à 4,54609 litres. Les conversions d’une mesure à l’autre ne sont pas simples et il faut donc trouver une quantité commune.
Pour éviter trop de complication lors de la conversion, il a été convenu que 225 litres seraient transportés en barriques, ce qui équivaut en arrondissant, à 50 gallons. Le but était d’avoir un chiffre rond. De plus, 225 litres correspondent à 300 bouteilles de 75 cl. Fixer la contenance à 75 cl étaient donc la solution pour faciliter les échanges avec les anglais et continuer les ventes. La contenance de 75 cl a donc été standardisée pour faciliter la situation et est maintenant instaurée de manière européenne. 1 gallon valait donc 6 bouteilles.
Aujourd’hui encore le commerce des vins reste marqué par cette histoire car les caisses de bouteilles de vin sont majoritairement vendues par 6 ou par 12 !
Par Didier Müller,
samedi 15 janvier 2022 à 07:18
-Podcast
Dans cet épisode de Math en tête le podcast, Alexandre Morgan nous parle de Jamshid Al-Kashi, de son théorème de géométrie, et de pourquoi on l'appelle parfois "théorème de Pythagore généralisé".
Par Didier Müller,
lundi 10 janvier 2022 à 07:57
-Dictionnaire
Un nombre semi-parfait est un entier naturel qui est égal à la somme de certains ou de tous ses diviseurs stricts.
Un nombre semi-parfait qui est égal à la somme de tous ses diviseurs stricts est appelé un nombre parfait (p. ex. 6 et 28).
2022 est semi-parfait, car 2022 = 1011 + 674 + 337 (3 de ses 7 diviseurs stricts).
Par Didier Müller,
dimanche 9 janvier 2022 à 10:27
-Dictionnaire
Un nombre sphénique est un entier strictement positif qui est le produit de trois facteurs premiers distincts.
La définition exige que chacun des trois facteurs premiers ne soit exprimé qu'une seule fois; par exemple 60 = 22 x 3 x 5, possède bien 3 facteurs premiers, mais n'est pas sphénique car le facteur 2 y est deux fois.
2022 est sphénique car 2022 = 2 × 3 × 337.
Notons au passage que tous les nombres sphéniques ont exactement 8 diviseurs. Les 8 diviseurs de 2022 sont 1, 2, 3, 337, 2 x 3 = 6, 2 x 337 = 674, 3 x 337 = 1011 et 2022.
Par Didier Müller,
samedi 8 janvier 2022 à 09:49
-Articles/revues
Au début du XIIIe siècle, lorsque Leonardo Fibonacci introduit cette suite dans son traité « Liber Abaci » pour modéliser de manière très simplifiée l’évolution d’une population de lapins immortels, il ne se doute pas de l’importance qu’elle acquerra en mathématiques, au point qu’une revue scientifique lui sera entièrement consacrée quelques siècles plus tard (The Fibonacci Quaterly, créée en 1963).
Par Didier Müller,
vendredi 7 janvier 2022 à 07:20
-Articles/revues
Rouler avec des roues triangulaires, forer des trous presque carrés ou construire des plaques d’égout non circulaires qui ne tombent pas dans leur trou, tant de possibles nous sont offerts par les courbes convexes de largeur constante qui fascinent mathématiciens et amateurs.
Enfourchez votre imagination et accompagnez-nous dans cette courte randonnée du vélo de Reuleaux aux courbes algébriques convexes de largeur constante.
Par Didier Müller,
jeudi 6 janvier 2022 à 07:57
-Dictionnaire
En mathématiques récréatives, un nombre Harshad, ou nombre de Niven, ou nombre multinumérique est un entier naturel qui est divisible par la somme de ses chiffres dans une base donnée. Le nom de Harshad leur a été donné par le mathématicien Dattatreya Ramachandra Kaprekar et signifie en sanskrit grande joie. L'appellation « de Niven » est un hommage au mathématicien Ivan Niven qui a publié un article et présenté une conférence en théorie des nombres sur leur sujet en 1977.
2022 est un nombre Harshad, puisqu'il est divisible par 6 (2+0+2+2). Il est le premier d'une suite de 4 nombres Harshad consécutifs, puisque 2023, 2024 et 2025 le sont aussi. Cela se reproduira en 3030. Il faudra attendre 131'052 pour avoir une suite de 5 nombres Harshad consécutifs.
Trouvez la formule la plus courte permettant de calculer 2022 en écrivant, dans l'ordre, les premiers nombres entiers, séparés par des opérateurs (+, -, *, /, racine carrée, exposant, factorielle).
Les mathématiques existaient-elles déjà au Néolithique? Qui était vraiment Pierre de Fermat ? Que restera-t-il du travail des statisticiens sur la pandémie de Covid-19 ? Voici le genre de questions sur lesquelles se penche une discipline aussi précieuse que vivante : l’histoire des mathématiques.
Par Didier Müller,
dimanche 2 janvier 2022 à 07:29
-Articles/revues
Comment savoir qu’une étoile est plus grande que la Lune ? En constatant qu’elle est beaucoup plus éloignée ! Mais on ne peut pas sortir son mètre ruban et le tendre pour mesurer la distance entre les objets célestes. Il faut ruser, et procéder de proche en proche. On détermine d’abord la distance d’un objet pas trop éloigné. Puis on utilise cette connaissance pour en déduire la distance d’un objet un peu plus lointain. C’est ce principe qu’on appelle l'échelle des distances : à chaque échelon, on se tient sur le barreau d'échelle précédent pour attraper le barreau suivant. Le premier échelon sur l'échelle des distances est le diamètre de la Terre.
Par Didier Müller,
vendredi 31 décembre 2021 à 07:54
-Podcast
Peut-on définir les mathématiques ? Depuis quand les utilise-t-on ? A quoi servent-elles ? D’où vient la déraisonnable efficacité des mathématiques ? Faut-il les voir comme un outil pour appréhender la réalité ou comme son essence même ? Pourquoi certains y voient une intention ou origine divine ?
Par Didier Müller,
jeudi 30 décembre 2021 à 10:47
-Livres/e-books
Une histoire des cadrans solaires en Occident
La Gnomonique du Moyen Age au XXe siècle
Denis Savoie
Belles Lettres (3 décembre 2021)
320 pages
Présentation de l'éditeur
00 cadrans solaires de l’Antiquité sont connus et conservés dans les musées. Il en existe des dizaines de milliers en Europe construits entre le Moyen Âge et aujourd’hui. La France en compte à elle seule plus de 32 000. La grande majorité fonctionne encore sur les églises, dans les jardins, sur les bâtiments publics ou sur les maisons privées.
Dans Une histoire des cadrans solaires en Occident, Denis Savoie rappelle l’héritage de la gnomonique gréco-romaine puis examine les réalisations médiévales qui traduisent le net recul de l’astronomie en Occident. Un profond changement s’amorce dans la mesure du temps à la fin du Moyen Âge et au début de la Renaissance, avec l’apparition des horloges mécaniques et l’abandon des heures antiques. Le développement des mathématiques, la diffusion des premiers ouvrages imprimés au XVIe siècle, l’augmentation de la précision des cadrans sur lesquels se règlent désormais les horloges, tous ces facteurs contribuent à massivement diffuser ces instruments qui vont pour longtemps rester la seule façon de connaître l’heure dans les villes et les campagnes.
Les cadrans solaires deviennent un domaine de recherche inépuisable et il s’en construit de nombreux types, des portables luxueux de poche jusqu’aux méridiennes dans les cathédrales en passant par les simples cadrans qui ornent les façades. Même si le XIXe siècle les relègue au second plan, les cadrans solaires n’ont jamais cessé d’être à la fois des objets d’art souvent ornés de devises et des instruments scientifiques et pédagogiques indispensables à la compréhension des mouvements du Soleil.
Synthèse unique de la gnomonique, cette Histoire des cadrans solaires, richement illustrée, nous fait découvrir toutes les facettes d’un instrument qui remonte aux débuts de l’astronomie.