dimanche 27 avril 2008
La vache - Les nouvelles chips
Par Didier Müller, dimanche 27 avril 2008 à 08:13 - La vache

lu 5956 fois
Ce blog a pour sujet les mathématiques et leur enseignement
au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de
classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la
génération zapping de nos élèves. Ces textes courts
et ces vidéos, privilégiant le côté ludique des maths,
pourront, je l'espère, les intéresser et leur donner l'envie d'en
savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute
la francophonie.
dimanche 27 avril 2008
Par Didier Müller, dimanche 27 avril 2008 à 08:13 - La vache
lu 5956 fois
samedi 26 avril 2008
Par Didier Müller, samedi 26 avril 2008 à 07:35 - En classe
lu 7347 fois
vendredi 25 avril 2008
Par Didier Müller, vendredi 25 avril 2008 à 07:24 - Sites de mathématiques
La feuille à problèmes : un lien entre enseignants de mathématiques pour chercher et faire chercher des problèmes à nos élèves, échanger des idées, communiquer des expériences.
Les auteurs présentent leur site ainsi :
- L’idée initiale était d’abord de se faire plaisir en cherchant des problèmes, ce qui avait été initié à l’IREM par l’organisation d’un atelier sur le problème.
- Ensuite l’idée d’un " enseignement par le problème " avait été vaguement agitée.
- Enfin vint l’idée qu’après tout, beaucoup de ces problèmes qui nous amusaient tant pouvaient aussi amuser nos élèves. En résumé, faire des mathématiques, pour nous, c’était avant tout, chercher et résoudre des problèmes, et nous voulions faire partager à tous, élèves et enseignants, notre plaisir. Assez rapidement, cette l’idée de faire découvrir à nos élèves ce qu’est vraiment un problème de mathématiques a prospéré sous forme du " problème ouvert ", qui a donné lieu à une brochure suffisamment diffusée pour qu’il soit inutile d’en parler ici. Mais la feuille à problèmes n’était pas la propriété d’un seul clan, et elle s’est ouverte aussi dans d’autres directions : échanges sur les erreurs des élèves, sur des situations problèmes, sur l’expérience maths en jeans, etc... Tout ce qui semblait intéresser et même passionner les enseignants dans leur travail quotidien y trouvait le cas échéant droit de cité, mais avec bien sûr toujours cet intérêt central porté au problème, considéré comme le coeur des mathématiques.
Que souhaiter à la nouvelle feuille à problèmes ? Le plus important, me semble-t-il, c’est que tous ceux qui y collaborent y trouvent le même plaisir que nous à l’époque : nous nous sommes bien amusés, car nous étions passionnés par le problème en mathématiques, à la fois pour nous et pour nos élèves. C’est tout le malheur que je souhaite à tous les collaborateurs, assidus ou occasionnels de la nouvelle publication : amusez-vous et amusez vos élèves !
lu 6161 fois
jeudi 24 avril 2008
Par Didier Müller, jeudi 24 avril 2008 à 07:41 - Jeux / Théorie des jeux
Voici Mathonaire, une version mathématique du jeu "Qui veut gagner des millions ?" : une question, quatre réponses possibles. C'est en anglais.
lu 8099 fois
mercredi 23 avril 2008
Par Didier Müller, mercredi 23 avril 2008 à 07:53 - Articles/revues
Les années 1836-1934 du Journal de Mathématiques Pures et Appliquées ont été numérisées par la Bibliothèque nationale de France et sont présentes dans la collection numérique Gallica. Il manque encore un volume, qui n'a pas été numérisé.
lu 5574 fois
mardi 22 avril 2008
Par Didier Müller, mardi 22 avril 2008 à 07:32 - Sites de mathématiques
Lemme est un site dédié à la mutualisation et à l'expérimentation de l'enseignement des mathématiques.
lu 6026 fois
lundi 21 avril 2008
Par Didier Müller, lundi 21 avril 2008 à 06:34 - Insolite
Nous savons tous qu'un point est une figure de dimension 0; qu'une ligne droite est un objet de dimension 1; qu'une surface plane est un objet de dimension 2; qu'un volume est de dimension 3... Ceci est la dimension euclidienne ou topologique (en réalité ces deux termes ne snt pas strictement synonymes). Qu'en est-il d'un objet fractal ?
Il existe plusieurs méthodes mathématiques pour exprimer la dimension d'un objet.
On peut tenter une approche simplifiée. Imaginons que je veuille mesurer la limite (supposée droite) entre deux terrains, que cette longueur soit de 10 m et que je dispose d'une règle de 1 m. Il est évident que je dois l'appliquer 10 fois le long de la limite pour faire la mesure. Si ma règle fait 0,5 m je devrai la reporter 20 fois. On voit que, si je divise par n la longueur de la règle je dois multiplier par n le nombre de fois où je la reporte, ce qui donne un rapport de n/n=1.
Si la longueur à mesurer est une courbe, on comprend qu'en utilisant une règle droite reportée n fois de la même manière on n'aura qu'une valeur approximative, notablement sous-évaluée. Plus la règle sera courte, plus l'opération sera fastidieuse, mais plus le résultat sera précis. Pour une règle suffisamment (infiniment) petite, si je divise par n sa longueur, je multiplie encore par n le nombre de fois où je l'applique le long de la ligne et j'obtiendrai la longueur exacte de la courbe. Ceci donne toujours un rapport de n/n, soit 1 (c'est vrai aussi si j'écris ln n/ln n, remarque qui va nous servir bientôt).
Imaginons maintenant que je veuille recouvrir une surface avec du carrelage. S'il me faut n carreaux de 20 cm de côté, et que changeant d'avis je veuille des carreaux de 10 cm de côté, je sais qu'il ne me faudra pas 2 fois plus de carreaux, mais 4 fois plus, puisque la surface est proportionnelle au carré des dimensions linéaires.
Autrement dit n'=n2. Donc ln n'/ln n=ln n2/ln n=2 et ln n2/ln n=2. Chacun sait que 2 est la dimension euclidienne ou topologique de toute surface. On voit sans difficulté que cette relation se vérifie quelle que soit la taille choisie pour les carreaux. Cette manière de calculer la dimension est appelée dimension de Hausdorff-Besicovitch ou "dimension fractale". Le même raisonnement s'applique sans difficulté à la dimension 3 pour les volumes.
La dimension de Hausdorff-Besicovitch est souvent difficile à calculer, mais il existe des exemples simples. Sans entrer dans les détails on peut penser qu'un objet bizarre comme la courbe de Koch, qui a une longueur infinie tout en n'emplissant qu'une région très limitée du plan, doit avoir des propriétés très particulières. L'image ci-dessous montre en effet clairement que chaque fois qu'on réduit d'un facteur 3 la longueur de la règle, on multiplie par 4 le nombre de fois où l'on doit l'appliquer le long de la figure. Ceci démontre que sa dimension de Hausdorff-Besicovitch est égale à ln 4/ln 3=1,26…
lu 7931 fois
dimanche 20 avril 2008
Par Didier Müller, dimanche 20 avril 2008 à 08:45 - Insolite
Une courbe de Peano est une fractale. Vous voyez ci-dessous les quatre premières itérations. Quand le nombre d'itérations tend vers l'infini, cette courbe passe par chaque point du carré unité. Bien que formée d'une simple ligne, elle est de dimension 2.
Cette courbe est nommée en l'honneur de Giuseppe Peano qui fut le premier à la décrire.
lu 7657 fois
samedi 19 avril 2008
Par Didier Müller, samedi 19 avril 2008 à 08:49 - Citations
L’employée de maison d’un mathématicien célèbre, interrogée sur l’activité de celui-ci, répondit qu’il passait son temps dans son bureau à écrire sur des bouts de papier qu’il jetait ensuite consciencieusement à la poubelle.
Alain Connes
lu 6062 fois
vendredi 18 avril 2008
Par Didier Müller, vendredi 18 avril 2008 à 07:34 - Histoire des maths
Tout le monde sait qu'il n'y a pas de prix Nobel en mathématiques. On connaît la médaille Fields, peut-être le prix Abel, mais saviez-vous qu'il y a une vingtaine d'autres distinctions ?
lu 5437 fois
jeudi 17 avril 2008
Par Didier Müller, jeudi 17 avril 2008 à 07:56 - Art
Adrian J.F. Leatherland produit des images à partir des nombres premiers, afin de visualiser leur distribution. Elles sont visibles sur son site Pulchritudinous primes. Il obtient des images qui ressemblent à des images astronomiques ou à un virus. Il a aussi créé une île qu'il a nommée Primes Island.
lu 5265 fois
mercredi 16 avril 2008
Par Didier Müller, mercredi 16 avril 2008 à 08:41 - Livres/e-books
Proofs Without Words a été numérisé et est disponible sur Google Books.
lu 5315 fois
mardi 15 avril 2008
Par Didier Müller, mardi 15 avril 2008 à 08:24 - Blogs
TransMaths est un blog de Mihaï Stoënescu. Sa particularité est de contenir beaucoup de vidéos réalisées par l'auteur lui-même.
lu 7862 fois
lundi 14 avril 2008
Par Didier Müller, lundi 14 avril 2008 à 08:50 - La vache
lu 10502 fois
dimanche 13 avril 2008
Par Didier Müller, dimanche 13 avril 2008 à 09:17 - Enigmes/casse-tête
Le Futoshiki est le cousin du Sudoku avec, comme lui, des règles très simples :
lu 14156 fois
< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 >