Le blog-notes mathématique du coyote

 

Extra

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.

jeudi 15 juin 2006

Le tableur de Google

Google a lancé en test fermé un logiciel en ligne de type « tableur » nommé « Google Spreadsheets ». Cet outil gratuit permet de créer des feuilles de calcul directement sur le Web et de les partager avec d'autres utilisateurs. Il est également possible d'échanger par clavardage avec d'autres internautes tout en travaillant sur le même document. Il est également possible d'importer des documents aux formats .CSV ou .XLS (Excel). Enfin, l'outil n'est compatible qu'avec les navigateurs IE 6 (Windows) et Firefox.

mercredi 14 juin 2006

Loups-garous

Dernière semaine de cours. Les notes sont mises, donc les élèves ne veulent plus bosser. C'est l'occasion de se détendre et de s'amuser un peu. Depuis plusieurs années, j'ai trouvé LA solution pour passer un bon moment ensemble, c'est le jeu des Loups-Garous de Thiercelieux. C'est d'ailleurs le seul jeu que je connais auquel on peut jouer jusqu'à 18 personnes. Il tire son inspiration d'un jeu russe nommé "Mafia". Il s'agit de découvrir parmi les habitants d'un village (représenté par l'ensemble des élèves) 3 ou 4 loups-garous qui, chaque nuit, étripent un villageois.
Le seul bémol, à mon avis, est que les élèves éliminés tôt sont passifs jusqu'à la fin de la partie, mais ça n'a pas l'air de les gêner. Il est vrai qu'il est aussi intéressant de voir comment se déroule la partie pour découvrir la tactique de chaque élève.
Je signale pour tous mes élèves devenus fans (c'est-à-dire à peu près tous) qu'une extension est sortie récemment.

A voir : le site officiel des Loups-Garous de Thiercelieux

mardi 13 juin 2006

Citation de Jean Rostand


L'homme, cet arrière-neveu du limaçon qui rêva de justice et inventa le calcul intégral.

Jean Rostand

lundi 12 juin 2006

25/5=14

Un extrait de film, américain je pense, où Ma & Pa Kettle démontrent que 25/5=14. C'est évidemment en anglais, mais comme ils écrivent au tableau, on comprend très bien ce qui se passe...

dimanche 11 juin 2006

Flatland

Le livre Flatland - A romance of many dimensions, de Edwin A. Abbot est disponible en ligne.
Une version française est aussi disponible.

samedi 10 juin 2006

Ballon de foot

On imagine habituellement le ballon de foot parfaitement rond mais, quand on y regarde de plus près, on s'aperçoit qu'il est formé de plusieurs morceaux, selon un arrangement qui vise à rendre le ballon aussi rond que possible. Les morceaux du ballon sont des polygones réguliers, pas tous les mêmes. Avec des morceaux tous identiques on ne peut fabriquer que des solides platoniciens qui ne sont pas bien ronds : vous imaginez-vous jouer au foot avec un ballon en forme de cube ?
Le ballon standard est formé d'hexagones et de pentagones réguliers. À chaque sommet trois morceaux se rejoignent. Si on ne prenait que des hexagones, on obtiendrait une figure plate comme un réseau de nids d'abeilles ; un seul hexagone et deux pentagones à chaque sommet, cela donnerait un sommet trop marqué (trop pointu).
On prend donc deux hexagones et un pentagone pour rendre la structure la plus sphérique possible. Si on fait la même combinaison à tous les sommets on obtient une structure homogène. En particulier, on voit que deux pentagones ne se touchent jamais. Demandons-nous combien il y a de pentagones et d'hexagones au total. Bien sûr, nous pourrions les compter. Mais on peut se tromper et compter deux fois le même morceau. Il y a des moyens ingénieux pour compter...
Par exemple si on tient le ballon avec un pentagone au sommet ; il y en a alors un autre en bas et les autres pentagones forment deux ceintures de 5 pentagones chacun. Au total cela fait 1 +1 +5 +5 =12 pentagones. Et combien d'hexagones ? Pour les compter, utilisons le nombre de pentagones: chaque pentagone a 5 voisins hexagonaux. Mais chaque hexagone a exactement 3 pentagones pour voisins, donc chaque hexagone est compté trois fois. Au total on obtient pour le nombre d'hexagones 12 × 5 / 3 =20. Vous imaginez la difficulté pour assembler un modèle en papier formé de 12 pentagones et de 20 hexagones !


Maintenant pensez au nombre de côtés, c’est-a-dire de segments qui sont à la frontière de deux faces. Il y en a beaucoup, leur nombre paraît compliqué à calculer sans faire d’erreurs... mais il y a un truc ! Une formule relie ces nombres : c’est la formule d’Euler, du nom d’un très grand mathématicien suisse, Leonhard Euler (1707-1783). Notons S le nombre de sommets, A d’arêtes, F de faces. On a : S − A + F = 2.
La formule est valable pour tous les solides fabriqués comme le ballon de foot avec des faces qui se rencontrent suivant des arêtes ; une seule restriction : le solide doit être convexe, c’est-à-dire ne contenir ni partie rentrante ni trou. Si on applique cette formule pour le ballon de foot on trouve : A = 60 + 32 − 2 = 90.

Ce ballon traditionnel va peut-être disparaître au profit d'un autre plus performant : le Teamgeist. Conçu par Adidas - fournisseur du ballon de la Coupe du monde depuis 1970 -, le ballon officiel de la Coupe du monde 2006 frôle la perfection en la matière. Aux dires du géant allemand, ce fruit de trois ans d'efforts est trois fois plus précis que ses concurrents.
Première révolution: le ballon ne comporte que 14 morceaux de cuir artificiel quand ses ancêtres en traînaient 32. Adieu donc les traditionnels 12 pentagones et 20 hexagones. Place aux bandes en forme de langue et d'hélice. Ces panneaux permettent d'obtenir une surface externe parfaitement lisse et ronde. Il traverse ainsi l'air avec plus de précision et moins de résistance.
Seconde révolution: les éléments ne sont pas cousus entre eux mais thermocollés au laser. Une technique inventée par Adidas qui le rend quasi étanche.

Source : LES SECRETS MATHÉMATIQUES DU BALLON DE FOOT par Albrecht Beutelspacher, Allemagne, article paru dans MATHÉMATIQUES BUISSONNIÈRES en Europe, pages 4-6
A voir : Icosaèdre tronqué

vendredi 9 juin 2006

Anniversaires de footballeurs

Question : dans une équipe de foot de la coupe du monde, quelle est la probabilité que deux joueurs soient nés le même jour (mais pas forcément la même année) ?

Pour ce calcul, il est plus aisé de déterminer la probabilité que deux joueurs ne soient pas nés le même jour. Avec un seul joueur, que nous nommerons Arthur, pas de coïncidence possible: la probabilité cherchée est donc égale à un. Voici qu'arrive Bernard. Son anniversaire peut être l'un des 365 jours de l'année, mais, comme Arthur est né l'un de ces jours, la probabilité d'avoir des dates distinctes est égale à 364/365 (le quotient du nombre de cas favorables et du nombre de cas possibles). Puis arrive Claude. Il reste 363 dates non prises, d'où la probabilité d'avoir une date distincte des deux autres, qui est de 363/365. La probabilité combinée d'avoir trois dates distinctes est égale au produit (364/365) x (363/365) (de la même façon que la probabilité d'obtenir deux face de suite, à pile ou face, est égale à 1/2 x 1/2).
Nous voyons apparaître la formule générale. Lorsque Denis arrive dans l'équipe, la probabilité d'avoir quatre dates distinctes est égale à : (364/365) x (363/365) x (362/365). Plus généralement, lorsqu'il y a n personnes dans l'équipe, la probabilité d'avoir n dates différentes est : (364/365) x (363/365) x ... x ((365 - n + 1)/365)).
Il nous suffit donc de calculer les valeurs successives de cette expression pour savoir à partir de quel n elle devient inférieure à 1/2. Vingt-deux joueurs ont une probabilité de 0,524 d'avoir des dates de naissance toutes distinctes, et ce résultat descend à 0.493 pour 23 joueurs. Donc, dès que 23 joueurs forment une équipe, la probabilité d'une coïncidence au moins est 1-0.493, soit 0.507 : l'événement est légèrement plus probable que son contraire.


Voyons ce qui se passe pour le Mondial de 2006. La FIFA fournit sur le site officiel de la coupe du monde la liste des joueurs de toutes les équipes et donne leur date de naissance. Sur les 32 équipes, j'en ai trouvé 22 (!) avec des joueurs nés le même jour :
  • Allemagne (5 novembre)
  • Angleterre (12 février)
  • Argentine (5 février)
  • Brésil (7 octobre)
  • Corée du Sud (9 juillet)
  • Costa Rica (30 décembre)
  • Côte d'Ivoire (4 juin)
  • Croatie (15 octobre)
  • Tchéquie (30 mars)
  • Espagne (1er septembre)
  • France (23 juin)
  • Iran (23 septembre)
  • Japon (25 juillet)
  • Mexique (14 août)
  • Paraguay (22 janvier)
  • Pays-Bas (29 octobre)
  • Serbie-Monténégro (29 octobre)
  • Suède (3 octobre)
  • Suisse (30 mars)
  • Togo (7 janvier)
  • Ukraine (2 janvier)
  • USA (24 mai)
On peut même aller plus loin. Parmi ces 22 équipes il y a théoriquement 1 chance sur 2 d'en trouver deux avec un anniversaire commun. Eh bien c'est le cas: le 29 octobre !

A lire : L'anniversaire, l'art des coïncidences, l'intuition trompeuse

jeudi 8 juin 2006

Inclassable

Je salue un autre blog où l'on parle de mathématiques : Inclassable (anciennement Six-à-pile). On y parle aussi ésotérisme, philosophie, livres, et encore d'autres choses.

mercredi 7 juin 2006

Loi de Benford

Comme chaque année, j'ai demandé à mes élèves de noter une vingtaine de prix lus dans des grands magasins, afin d'illustrer la loi de Benford. Un jour de 1881, un astronome américain, Simon Newcomb, s'aperçut que les premières pages d'une table de logarithmes étaient plus usées que les autres. Se pouvait-il que les données recherchées dans cette table commençaient plus souvent par le chiffre "1" ? Il tenta de résumer les résultats de son observation dans une formule simple pour mesurer la fréquence d'apparition du premier chiffre C, celui situé le plus à gauche, dans un ensemble de données :

p("1er chiffre significatif est d") = log10(1+1/d), avec d=1, 2, ..., 9

A l'époque, cette formule ne convainquit personne. Cinquante ans plus tard, vers 1938, un physicien américain, Frank Benford, redécouvrit les mêmes fréquences que celles résultant de l'application de la formule de Newcomb, en répertoriant plus de 20 000 données sélectionnées dans des domaines aussi divers que les longueurs de plus de 300 fleuves, les recensements démographiques de plus de 3 000 régions, les masses atomiques des éléments chimiques, les cours de bourse, les constantes de la physique, les couvertures de journaux, etc. Il constata, donc, que le premier chiffre était un "1" près d'une fois sur trois ! Il en fit une loi qui porte aujourd'hui son nom : la loi de Benford.
Ce n'est qu'en 1996 que Terence Hill démontra mathématiquement la loi de Benford.

Attention ! Cette loi ne s'applique qu'aux résultats de mesure. Inutile de l'utiliser pour avaoir plus de chance de gagner à la loterie !

Le graphique ci-dessous compare la loi de Benford (en bleu) avec les fréquences observées...

  1. de prix récoltés au hasard par mes élèves (3369 nombres)
  2. des résultats cantonaux d'une votation fédérale parus dans le Quotidien Jurassien du 14 juin 1999, page 4 (828 nombres)
  3. des superficies des pays souverains et territoires dépendants en 1974 (204 nombres).

mardi 6 juin 2006

MagicSport

A l'occasion du Mondial, Kinder Surprise a lancé la collection MagicSport. 15 joueurs répartis en 5 équipes (je parie que ça rappelle quelque chose aux élèves du Lycée qui ont passé leur examen de maths ce matin). Sur 24 oeufs achetés, je n'ai pu trouver que dix joueurs différents. J'ai trouvé 5 fois Tony, 3 fois Mario et 3 fois Matt.
Tout ça pour dire que j'échange volontiers Bruno, Matt, Mario, Léon, Billy et Aldo contre Paco (le boeuf de l'équipe bleue), Dany (la vache de l'équipe bleue), Ely (l'éléphant de l'équipe jaune), Zibbo (le zèbre de l'équipe jaune) et Rino (le rhinocéros de l'équipe jaune).


Je ne sais pas si c'est parce qu'on est en Suisse, mais la moitié des figurines que j'ai trouvées sont rouges. J'en viens aussi à me demander s'il y a vraiment des joueurs jaunes, puisque je n'en ai encore trouvé aucun. C'est louche!

lundi 5 juin 2006

Triche interdite

Demain aura lieu l'examen écrit de mathématiques pour la maturité (le bac). Je rappelle à tous mes élèves, que toute tentative de triche sera sanctionnée d'exclusion.
Allez! Travaillez bien et bon courage pour demain!


P.S. Avez-vous reconnu ce théorème ?

samedi 3 juin 2006

Calculs sur un pays

Dave Richeson propose sur son site un exercice intéressant pour les lycéens :

  1. Estimer l'aire des USA.
  2. Localiser le centre géographique des USA.
  3. Localiser le point médian géographique (ce point divise le pays en quatre régions d'aire égale).
  4. Localiser le centre de la population des USA.
  5. Localiser le point médian de la population.
  6. Estimer le périmètre de USA
Pour cela il utilise Maple. Mais comme il a le bon goût de mettre à disposition son programme, on devrait pouvoir l'adapter à un autre langage de programmation et à un autre pays.

A lire : The center of the United States and other applications of calculus to geography

vendredi 2 juin 2006

Les ancêtres français du Sudoku

Le Sudoku n'est apparemment pas une invention récente. A la fin du XIXème siècle, les Français jouaient en effet à remplir des grilles très proches de ce jeu, qui étaient publiées dans les grand quotidiens de l'époque, révèle Christian Boyer dans la revue Pour la Science du mois de juin 2006. Selon lui, la grille la plus proche d'un Sudoku et celle de B Meyniel, publiée dans le quotidien La France du 6 juillet 1895. Les premiers Sudokus ont été publiés en 1979 par l'Américain Howard Garns, avant de paraître dans les revues japonaises dans les années 80 et 90, où ce jeu a pris son nom. Leur succès international a vraiment démarré grâce au Néo-Zélandais Wayne Gould, grâce à un logiciel de son invention qui permettait de générer facilement des grilles, et qui en a publiées dans le Times de Londres à partir de novembre 2004.

Lire la suite

jeudi 1 juin 2006

Feuille de cannabis

Une courbe de circonstance. Ben oui, aujourd'hui c'est le 1er juin ;-)


Un bel exemple de courbe en coordonnées polaires.

mercredi 31 mai 2006

Les boeufs de Newton

Voici une première énigme tirée du Jardin du Sphinx, de Berloquin :

La tradition attribue à Newton ce curieux problème, dont la solution n'exige aucun calcul différentiel.

75 boeufs ont besoin de 12 jours pour brouter l'herbe d'un pré de 60 ares, tandis que 81 boeufs ont besoin de 15 jours pour brouter l'herbe d'un pré de 72 ares. Combien faut-il de boeufs pour brouter en 18 jours un pré de 96 ares?

(On suppose que l'herbe croît uniformément et qu'elle est dans les trois prés, à la même hauteur au début du problème.)

mardi 30 mai 2006

Le jardin du Sphinx

J'ai pu me procurer dans une librairie d'occasion le livre de Pierre Berloquin Le jardin du Sphinx. 151 énigmes mathématiques très jolies qui ne demandent que peu de connaissances. Le format est original : sur les pages de droite figurent des énigmes, sur celles de gauche les solutions d'autres énigmes. Ce livre n'est malheureusement plus disponible (il date de 1981), mais je présenterai de temps en temps une de ces énigmes.

Pierre Berloquin est toujours actif dans le domaine du divertissement mathématique. Il a d'ailleurs créé le site créalude.net où il propose toute une série de jeux mathématiques et logiques.

dimanche 28 mai 2006

Jeu du gratte-ciel

Encore un jeu logique : le jeu du gratte-ciel. Chaque case contient un immeuble de 10, 20, 30 ou 40 étages (on peut ajouter des immeubles plus hauts sur des grilles plus grandes). Les immeubles d'une même rangée (ligne ou colonne) ont tous des tailles différentes. Les informations données sur les bords indiquent le nombre d'immeubles visibles sur la rangée correspondante par un observateur situé à cet endroit. Par exemple, si une ligne contient la dispostion 20-40-30-10, deux immeubles sont visibles depuis la gauche (le 20 et le 40), et trois immeubles sont visibles à partir de la droite (le 10, le 30 et le 40). Le but du jeu est de remplir la grille.
Voici un exemple de problème :

 
3
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
 
1

La réponse se trouve dans les commentaires de ce billet.
Un premier livre sur ce jeu logique est sorti. Le premier d'une longue série ?
Un de mes élèves, Quentin, a choisi ce jeu comme thème de travail de maturité : nombre de grilles possibles, génération et résolution de grilles. On verra le résultat l'année prochaine.

samedi 27 mai 2006

A New Kind of Science

Stephen Wolfram, le créateur du logiciel Mathematica, a mis en ligne son livre A New Kind of Science, consacré aux automates cellulaires.

Pour tester soi-même les automates cellulaires : Cellular Automata Viewer 2.0

vendredi 26 mai 2006

Gallery of Data Visualization

Le site de Michael Friendly Gallery of Data Visualization - The Best and Worst of Statistical Graphics présente toute une série de graphiques, très bons ou très mauvais. Parmi les très bons, on peut trouver, dans la rubrique "Historical milestones", le fameux graphique de Charles Joseph Minard (1781-1870) qui montre l'évolution des effectifs de l'armée de Napoléon lors de sa campagne de Russie de 1812, tout en situant géographiquement le parcours de cette armée. La version ci-dessous est plus lisible sur un écran.


Ce graphique communique un nombre impressionnant d'informations de façon parfaitement intelligible et compréhensible en un coup d'œil. Essayez d'imaginer la même image sous forme de texte: la longue litanie des pertes de la grande armée au fur et à mesure des batailles serait sans doute fastidieuse et pas réellement mémorisable. De même les indications géographiques sur son parcours seraient sans doute inintelligibles.
A la frontière polono-russe, sur le Niemen, la largeur de la bande rose indique (1 mm pour 10'000 hommes) une armée de 422'000 hommes lorsqu'elle envahit la Russie et s'amincit pour atteindre, à Moscou, une épaisseur représentant 100'000 hommes.
La route de la retraite est indiquée par la bande noire jointe à une échelle de températures datées. Ce graphique raconte mieux qu'aucun mémorialiste le désastre que fut la traversée de la Bérézina. De retour en Pologne, la Grande Armée ne comptait plus que 10'000 hommes dont Napoléon qui se abandonna ses grognards pour rentrer seul à Paris.

jeudi 25 mai 2006

Multiplication à la russe

Il existe une méthode pour multiplier deux nombres où il ne faut que savoir multiplier ou diviser par deux, et additionner. On appelle cette méthode "multiplication à la russe".

  1. Dans la colonne de gauche, on divise par deux en prenant la partie entière et on s'arrête à 1.
  2. Dans la colonne de droite, on double succesivement chaque nombre.
  3. On raye à droite tous les chiffres en face d'un nombre pair.
  4. On fait la somme des nombres de droite restants.

Justification
Remplacer dans la colonne de gauche chaque nombre impair par 1 et chaque nombre pair par 0 revient à exprimer le nombre de gauche en base 2, si on lit de haut en bas. Les opérations effectuées sur la colonne de droite correspondent alors à une multiplication dans la base 2.

A voir et à tester : La multiplication à la russe

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 >