Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.

vendredi 21 février 2014

Les mathématiciens sont des artistes : l'IRM le confirme

Beaucoup de mathématiciens et de physiciens théoriciens sont aussi des musiciens. L'idée qu'il existe une beauté mathématique aussi émouvante et bouleversante que l'Hyperion de Hölderlin, le David de Michel-Ange ou la Symphonie no 7 de Ludwig van Beethoven n'est pas nouvelle. Elle vient d'être confirmée grâce à l'IRM, qui montre que les zones du cerveau qui s'activent lorsqu'un mathématicien ressent la beauté d'une équation ou d'une théorie sont les mêmes que lors d'une expérience intense devant la beauté d'une œuvre d'art.

Lire l'article sur Futura-Sciences

mardi 11 février 2014

Il existe 177'147 manières de nouer une cravate

Des mathématiciens de l’Institut Royal de Technologie de Stockholm ont calculé qu’il existait 177.147 manières différentes de faire un nœud. L'équipe de mathématiciens se serait intéressée au sujet après avoir visionné sur Youtube un tutoriel sur le nœud de cravate du Mérovingien, personnage de Matrix Revolutions interprété par Lambert Wilson.


Dans une théorie établie en 1999, reprise par le New Scientist, deux physiciens de l’Université de Cambridge, Thomas Fink et Yong Mao, avaient déjà élaboré un «langage formel pour décrire les nœuds de cravate». On y parlait deux autres nœuds: le Eldredge, et le Trinity. Ils avaient mis au point un système de notation qui décrivait les séquences de plis de la cravate, sur la gauche, sur la droite, ou au centre. «Leur modèle a révélé la façon dont chaque pli affecte l'apparence finale du nœud», peut-on lire sur le NewScientist. Avec le langage de Thomas Fink et Yong Mao, seulement 85 nœuds de cravate différents étaient faisables. Pourquoi si peu de combinaisons possibles? Parce que les physiciens supposaient qu’on ne pouvait faire rentrer la cravate dans un nœud qu’une seule fois, et que toutes les combinaisons étaient celles où le reste de la cravate recouvrait le nœud. Dans la nouvelle théorie, la pointe de la cravate peut être rentrée plusieurs fois dans des nœuds au cours du pliage.
L'équipe suédoise a utilisé trois symboles — T (dans le sens des aiguilles d'une montre), W (le sens contraire) et U (la pointe de la cravate rentre dans un nœud) et crée un générateur de nœuds de cravate aléatoires, en plaçant les lettres dans des ordres différents. (TWWTWTWTTTU est par exemple une combinaison d'un noeud de cravate)— et onze mouvements (contre huit dans la théorie de 1999). En voici un exemple:

Source : Slate.fr