mercredi 26 novembre 2008
Paradoxe de Bertrand
Par Didier Müller, mercredi 26 novembre 2008 à 07:59 - Insolite
Le samedi 29 novembre à 15h15, au centre professionnel "en Dozière" à Delémont, le cercle de mathématiques et de physique de la société jurassienne d'émulation propose une conférence donnée par le prof. Henri Carnal sur les paradoxes en calcul des probabilités. L'entrée est libre et les élèves du lycée sont vivement encouragés a suivre cette conférence.
Un de ces paradoxes est le célèbre "Paradoxe de Bertrand". Il met en évidence les limites du recours à l'intuition dans cette discipline. Il consiste à choisir au hasard une corde d'un cercle donné et d'estimer la probabilité que celle-ci soit de longueur supérieure au côté du triangle équilatéral inscrit dans le cercle. Le paradoxe est que cette probabilité dépend du protocole de choix de la corde. Ce problème fut énoncé pour la première fois en 1888 par Joseph Bertrand dans son ouvrage Calcul des probabilités. Bertrand en donnait trois réponses différentes (une chance sur deux, une sur trois et une sur quatre), toutes les trois apparemment valides.
Soit un cercle de rayon 1. Le côté d'un triangle équilatéral inscrit dans ce cercle a pour longueur racine de 3. Le paradoxe de Bertrand consiste à déterminer la probabilité qu'une corde du cercle, choisie au hasard, possède une longueur supérieure à racine de 3.
- Extrémités aléatoires : soit un point de la circonférence du cercle et le triangle équilatéral inscrit dont l'un des sommets est ce point. On choisit aléatoirement un autre point au hasard sur le cercle et on considère la corde reliant les deux points. Elle est plus longue que le côté du triangle si le deuxième point est situé sur l'arc reliant les deux sommets du triangle opposé au premier point. La probabilité est donc alors 1/3.
- Rayon aléatoire : on choisit un rayon du cercle et on considère le triangle équilatéral inscrit dont un côté est perpendiculaire au rayon. On choisit aléatoirement un point sur le rayon et on trace la corde dont il est le milieu. Cette corde est plus longue que le côté du triangle si le point est situé plus près du centre du cercle que l'intersection de ce côté et du rayon, laquelle est située au milieu de ce dernier. La probabilité est donc alors 1/2.
- Milieu aléatoire : soit un point choisi aléatoirement à l'intérieur du cercle et une corde dont il est le milieu. La corde est plus longue qu'un côté du triangle équilatéral inscrit si le point est situé à l'intérieur d'un cercle concentrique de rayon 1/2. L'aire de ce cercle est un quart celle du grand cercle. La probabilité est donc alors 1/4.
Pour illustrer ce paradoxe, plusieurs sites proposent des animations et des simulations :
- Le paradoxe de Bertrand sur le fameux site de Thérèse Eveilleau
- Le paradoxe de Bertrand ou Qu'est-ce qu'une simulation ?
- Bertrand's Paradox
lu 6009 fois