Le blog-notes mathématique du coyote

 

Extra

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.

mardi 22 janvier 2013

Anamorphoses sur un bureau

dimanche 20 janvier 2013

Pourquoi la Lune parait-elle plus grande à l'horizon ?

Cela fait des siècles et des siècles que l'on a remarqué que la Lune paraît plus grande à l'horizon. Pendant longtemps, personne n'a compris pourquoi. Cela a été l'objet de nombreux débats. L'explication contemporaine n'arrive toutefois pas à convaincre tout le monde.
Des chercheurs de l'université de Pennsylvanie pensent qu'il s'agit plutôt d'une contradiction dans la manière avec laquelle on compare les indices concernant les distances au sein de son modèle de monde perçu avec les indices de la vision binoculaire. L'illusion existe bel et bien : les photographies montrent une Lune de même taille sous tous les angles.
L'explication classique dit qu'il s'agit d'un contraste : près de l'horizon, la Lune se retrouve proche des objets qui ont la taille que nous connaissons bien : arbres, immeubles, etc. Par comparaison avec ces objets familiers, la Lune nous apparaît alors plus grande. Cette explication a un lien direct avec l'illusion célèbre d'Ebbinghaus : la largeur apparente d'un cercle dépend de la taille des cercles proches.
Il y aurait deux soucis avec cette théorie explicative. La première bizarrerie est que cela n'explique pas le degré d'expansion. Certains observateurs affirment que la Lune nous apparaît parfois jusqu'à deux fois plus grande à l'horizon (par rapport à une Lune perdue dans le ciel). L'illusion typique d'Ebbinghaus ne peut atteindre que 10 %... D'autre part, pourquoi l'effet disparaît-il justement dans les photographies et vidéos ? L'illusion d'Ebbinghaus fonctionne très bien avec les photos et vidéos !
Les auteurs de cette nouvelle théorie disent que le cerveau juge les distances de deux manières différentes. La première est la vision binoculaire (deux yeux pour le relief). Lorsque l'image qui apparaît pour chaque oeil est la même, l'objet doit être distant. Le deuxième effet provient de notre modèle du monde intégré. Nous percevons le ciel comme étant à une certaine distance finie et le Soleil, la Lune et les étoiles sont « devant » ce ciel.
Notre monde perçu par notre cerveau suggère que la Lune est plus proche que le ciel tandis que notre vision binoculaire suggère qu'elle ne l'est pas. L'hypothèse avancée est donc que le cerveau résolve cette contradiction en déformant les projections visuelles de la Lune et que cela résulte en un accroissement de la taille angulaire.
Cette distorsion est très dépendante de la distance perçue dans le ciel. C'est influencé par les indices de distance sur le sol qui vont « fabriquer » le ciel. Lorsque ces indices sont absents (la Lune est haute dans le ciel), la Lune et le ciel fondent en un seul « plafond ».

Pour aller plus loin: Joseph Antonides, Toshiro Kubota Binocular Disparity as an Explanation for the Moon Illusion arxiv:1301.2715

Source : Sur-la-Toile

jeudi 10 janvier 2013

La chute d'eau d'Escher en mouvement!


Tout n'est qu'illusion... Voici l'explication :