Le blog-notes mathématique du coyote

 

Extra

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.

mercredi 29 août 2007

Newton devancé par les mathématiciens Hindous ?

Par Laurent Sacco, Futura-Sciences

On attribue généralement à Newton et à Leibniz la découverte de ce qui est probablement le plus puissant outil mathématique à la disposition de l’esprit humain : le calcul différentiel et intégral. Comme le montre George Gheverghese Joseph de l’University of Manchester, certains des résultats obtenus à l’aide de l’analyse infinitésimale à partir de la fin du 17ième siècle en Europe, étaient déjà connus des mathématiciens de l’école du Kerala, au sud-ouest de l’Inde, vers 1 400. Selon lui, on ne peut d’ailleurs pas écarter la possibilité qu’une partie de l’inspiration de Leibniz et Newton ne provienne de la transmission des travaux de Madhava et Nilakantha en Occident par les jésuites.
La brillance de l’école Indienne en mathématiques est reconnue depuis longtemps mais l’importance des résultats découverts dans le domaine du calcul différentiel et intégral par l’école du Kerala est curieusement assez mal appréciée et rarement citée. Pourtant, c’est dès 1835 que l’anglais Charles Whish avait attiré l’attention du monde savant en publiant un article sur quatre traités de mathématiques et d’astronomie Hindous de l’école du Kerala, ceux de Nilakantha (Tantra Samgraha), Jyesthadeva (Yuktibhasa), Putumana Somayaji (Karana Paddhati) et enfin le Sadratnamala de Sankara Varman.
Dans cet article, et certainement à son grand étonnement, il insistait sur le fait que les mathématiciens et astronomes de cette partie de l’Inde avaient non seulement jeté les bases d’un calcul différentiel et intégral mais qu’ils étaient aussi en possession de résultats obtenus des siècles après eux en utilisant les algorithmes du calcul infinitésimal de Newton et Leibniz. Ils connaissaient en effet, par exemple, les développements en séries de Gregory et Leibniz pour la fonction arctangente et ceux des fonctions sinus et cosinus généralement attribués à Mac-Laurin et Newton.
Ces résultats semblent tous venir d’un seul et même mathématicien né en 1350, Madhava de Sangamagramma, qui semble avoir bénéficié d’un génie comparable à son compatriote Srinivasa Aiyangar Ramanujan. Curieusement, et même si des centaines d’années les séparent, ce dernier était né à 400 km au sud-ouest de Chennai (Madras) dans l’état du Tamil Nadu. C'est-à-dire pas très loin du lieu de naissance de Madhava, Kochi, au Kerala. Il y a d’ailleurs certaines similarités entre les approches de Ramanujuan et Madhava, or il semble que la mère de Srinivasa Ramanujan possédait des connaissances assez profondes en mathématiques propres à la tradition Hindou. La connexion entre les deux génies est-elle autre chose que géographique ?

Une transmission à l'Occident ?

Joseph avait déjà publié un livre en 1994 pour lutter contre un certain eurocentrisme ayant tendance à minimiser l’importance des découvertes mathématiques en dehors de l’Occident.
Ce livre avait déjà pour but de faire plus largement connaître l’école de mathématiques du Kerala. Malheureusement, celui-ci n’avait pas eu un écho suffisant à ce sujet et c’est à l’occasion d’une troisième réédition, ainsi que suite à la découverte d’un nouveau document sur les accomplissements de ces mathématiciens dans le domaine de l’analyse, que Joseph revient à la charge.
Une des possibilités ouverte par ce livre est fascinante. Il faut savoir que le Kerala a toujours été l’un des états les plus riches et les plus civilisés de l’Inde. Déjà à l’époque de l’empire Romain, les bateaux européens accostaient ses berges pour rapporter des épices, ce qui fait qu’il n’est pas rare d’y trouver de grandes quantités de pièces frappées à l’effigie des empereurs. Surtout, en 1495, Vasco de Gama arrive à Calicut. Les jésuites s’implantent dès lors en Inde et commencent à étudier et traduire les textes Hindous. Un siècle plus tard Grégoire XIII lance la révision du calendrier. Or, dans le comité chargé de celle-ci se trouve le jésuite, mathématicien et astronome Clavius dont on sait qu’il avait demandé à ce que l’on examine systématiquement la façon dont les autres pays établissaient leur calendrier. Il semble donc très probable que les découvertes des mathématiciens et astronomes du Kerala aient ainsi été rapportées en Europe même si aucune preuve n’existe à ce jour.
Toujours est-il que l’emploi des séries infinies, et de certaines démonstrations, très similaires à celles de l’école du Kerala, commencent à faire leur apparition en Occident quelques dizaines d’années plus tard. Coïncidences ? Les archives du Vatican contiennent peut-être la réponse.

Des précurseurs ?

Peut-on vraiment considérer les Hindous comme des précurseurs et des devanciers de Newton et Leibniz, voire même leur inspirateurs secrets ?
Précurseurs certainement, devanciers, à part pour certains résultats particuliers, probablement pas, même si des textes surprenants dorment peut-être encore quelque part.
Il faut savoir que des notions de calcul différentiel et intégral avec des séries infinies étaient déjà présentes chez Archimède. De plus, il n’y a pas à proprement parler d’algorithmes généraux du calcul différentiel et intégral dans les travaux des mathématiciens Indiens. Les travaux de Leibniz et Newton sont beaucoup plus larges et même en imaginant une influence directe sur eux des découvertes de Madhava, ils sont allés au-delà.
Les circonstances des découvertes de Leibniz et Newton sont assez bien documentées et les sources pointent toutes en direction des travaux d’Archimède, de façon directe ou indirecte. Il est bien connu, de plus, que c’est en lisant les travaux de Pascal sur le problème de la cycloïde que Leibniz a pris conscience de la relation liant primitive d’une fonction et problème de quadrature d’une aire : il n’y avait pas de lien direct avec une série infinie.
Reste que les performances des mathématiciens de l’école du Kerala sont spectaculaires et méritent à juste titre d’être universellement reconnues. Incontestablement, leurs noms doivent maintenant figurer au panthéon des grands mathématiciens de l’humanité avec Archimède et Al-Khwarizmi.

vendredi 20 juillet 2007

Vie de Clairaut

Alexis Clairaut est l'un des plus grands mathématiciens de son temps. Il lit son premier mémoire à l'Académie des sciences alors qu'il n'a pas treize ans, devient académicien à dix-huit ans, participe à l'expédition en Laponie destinée à vérifier l'aplatissement de la Terre aux pôles, détermine par le calcul le mouvement de la Lune et le retour de la comète de Halley.
Le cœur du site www.clairaut.com est une base de données sur la vie de Clairaut dont les enregistrements sont progressivement mis en ligne.

mercredi 2 mai 2007

Le fabuleux destin de racine de 2

Futura Sciences propose un dossier sur le fabuleux destin de racine de 2, tiré du livre du même nom de Benoît Rittaud, auteur bien connu des lecteurs de Tangente et de La Recherche.

dimanche 15 avril 2007

300ème anniversaire de la naissance d'Euler

Euler, le monde mis en équations

Il y a 300 ans, le 15 avril 1707, naissait à Bâle «l'un des plus grands savants de tous les temps», tant ses découvertes mathématiques influencent encore la science d'aujourd'hui.



Article du Temps, écrit par Olivier Dessibourg
Vendredi 13 avril 2007

En 1736 dans la ville de Königsberg en Prusse (Kaliningrad aujourd'hui), sept ponts permettaient d'atteindre l'île de Kneiphof cernée par les flots de la rivière Pregel, qui se scindait plus loin en deux bras. Ce plan urbain intriguait les savants de l'époque: était-il envisageable, en partant d'un bâtiment, d'y revenir après avoir franchi une seule fois chacun de ces ponts?

C'est un jeune mathématicien suisse, pieux et borgne, qui prouva l'impossibilité d'un tel trajet, jetant les bases de ce que les scientifiques appellent la «théorie des graphes». Cruciaux en topologie, ces travaux ont contribué à sa notoriété. Mais pour que l'homme fût et soit encore aujourd'hui considéré comme «l'un des plus grands savants de tous les temps», il en fallait davantage. Cosmopolite autant qu'ingénieux, Leonhard Euler, dont le tricentenaire de la naissance est fêté ce 15 avril, prouva jusqu'à son dernier souffle que cette étiquette n'est pas démesurée.

«Presque toutes les mathématiques et les lois de la physique actuelles utilisent les travaux d'Euler, souligne Gerhard Wanner, professeur de mathématiques à l'Université de Genève. Ainsi, le design de l'Airbus A380 et celui de la coque d'Alinghi ou l'établissement des prévisions météo recourent aux équations différentielles de la dynamique des fluides qu'il a développées.» Autre exemple: le viaduc de Millau, près de Clermont-Ferrand, plus haut pont autoroutier d'Europe. «Les calculs concernant les vibrations, la stabilité et les sollicitations induites par les vents reposent sur les formules d'Euler», mentionne un livre dédié à l'ouvrage. Bref, «évoquez un domaine scientifique, et vous y trouverez un soupçon du génie suisse», résume le professeur.

Leonhard Euler naît le 15 avril 1707 à Bâle, d'un père pasteur et d'une mère fille de pasteur. Autant dire que sa voie semblait toute tracée. Entré à 14 ans à l'Université de Bâle officiellement pour étudier la théologie, le grec et l'hébreu, il passe ses samedis en compagnie du mathématicien Johann Bernoulli. Grâce à l'intervention de cette sommité européenne auprès de son père, l'adolescent change de direction d'études, et passe brillamment en 1726 sa thèse de doctorat en sciences avec pour sujet la propagation du son. Durant toute sa vie, il gardera néanmoins une foi profonde et immuable.

C'est l'année suivante, lors du concours du Grand Prix de l'Académie des sciences de Paris, que le jeune homme acquiert ses galons de célébrité.

En ce XVIIIe siècle, les grandes questions techniques touchent à la navigation et à la construction des bateaux, les puissances navales de l'époque (Espagne, France et Angleterre) cherchant à étendre leur empire. Le problème posé consiste à localiser, sur le navire, le meilleur endroit où fixer le mât pour rendre l'embarcation la plus rapide et la mieux gouvernable. Euler, qui n'est jamais sorti de Suisse et n'a donc vu aucun de ces vaisseaux, propose une solution basée sur ses calculs de physique. Il n'emporte pas la mise, seulement une mention honorable - il obtiendra le prix à douze reprises par la suite. Mais son analyse est correcte et ses idées sont incorporées dans la conception des futures flottes anglaise et française. Audacieux, Euler écrit: «Je n'ai pas jugé nécessaire de confirmer ma théorie par l'expérimentation, car elle dérive des principes les plus sûrs de mécanique, si bien qu'aucun doute ne peut être émis.» Plus qu'aucun autre de ses homologues, le jeune savant avait une confiance immense dans l'idée, encore controversée, que les maths pouvaient fidèlement connecter le monde réel et un univers de symboles, de formules et d'abstraction. Au-delà des apparences, Euler, décrit comme ouvert, pas compliqué, plein d'humour et sociable, restait extrêmement modeste, notamment concernant la propriété scientifique. «Contrairement à la plupart des savants de son époque, il n'a jamais revendiqué la priorité d'une découverte. Il ne cache rien, et offre au lecteur les conditions de trouver par ses propres moyens quelque chose de nouveau», écrit de lui Emil Fellmann, membre de l'Académie suisse des sciences et spécialiste de l'œuvre d'Euler*. En témoignent encore ses ouvrages pédagogiques sur les maths, dont le contenu se retrouve presque littéralement dans les livres de collège d'aujourd'hui.

En 1727, le jeune Bâlois est invité par Catherine de Russie à rejoindre l'Académie des sciences de Saint-Pétersbourg, établie par Pierre le Grand pour combler le fossé scientifique avec l'Europe de l'Ouest. Au XVIIIe siècle, les universités n'étaient en effet pas des centres névralgiques de la science car elles privilégiaient l'enseignement au détriment de la recherche. Cette direction était plutôt assumée par les académies royales, soutenues financièrement par des souverains généreux. Euler y reste jusqu'en 1741 avant de rejoindre l'Académie de Berlin, à la demande de Frédéric le Grand de Prusse.

L'aisance matérielle liée à ces postes permet à Euler de se concentrer sur ses travaux, et de faire avancer les mathématiques à pas de géants: «La notion f(x), qui désigne la fonction f appliquée à l'argument x, les notations modernes des fonctions trigonométriques (cosinus, sinus, etc.), la lettre e - appelée nombre d'Euler - qui est la base du logarithme naturel et de la fonction exponentielle et figure sur chaque calculette, ou la lettre i décrivant le nombre dit «imaginaire» correspondant à la racine carrée de -1, qu'on dit impossible à calculer durant l'école obligatoire: tous ces concepts révolutionnaires, et surtout la manière inédite de les noter, nous les devons à Euler», explique Gerhard Wanner. Sans parler surtout des progrès énormes que le Bâlois réalise en analyse, dans le calcul différentiel et intégral, et dans la théorie des nombres. Environ 80 objets mathématiques (théorème, angles, constante, formule, etc.) portent son nom. Non content d'être le mathématicien le plus prolifique de tous les temps, le savant traite aussi de questions de physique, d'optique, de géométrie, de sciences économiques ou d'astronomie. Soit plus de 800 écrits qui remplissent entre 60 et 80 volumes in-quarto.

Selon Emil Fellmann, Euler avait pour lui «une régularité inlassable dans le travail et une rare capacité de concentration. Un enfant sur les genoux, un chat sur l'épaule, voilà comment il écrivait ses œuvres immortelles, raconte son ami et collègue Thiébaut.» Des enfants, le génie bâlois en eut treize, dont huit sont décédés en bas âge.

Mais surtout, «Euler avait une mémoire prodigieuse. Ce qu'il entendait ou voyait semblait se graver pour toujours dans son esprit», poursuit Emil Fellmann. Cette capacité exceptionnelle lui servit surtout durant les dix-sept dernières années de sa vie: «Une cécité totale suite à une cataracte ne l'a pas empêché de produire, de tête, des écrits plus admirables de complexité les uns que les autres, raconte le professeur Wanner en feuilletant un volume de ses Œuvres complètes. Au final, celles-ci sont encore aujourd'hui d'une incroyable actualité - certains de ses travaux n'ont trouvé confirmation expérimentale qu'avec l'avènement des ordinateurs - et ont débouché sur des applications en physique, en chimie, en biologie, voire en médecine, lorsqu'il s'agit par exemple de caractériser l'écoulement sanguin dans les artères.»

Dès 1766, Euler est de retour à Saint-Pétersbourg. Le 18 septembre 1783, alors qu'il calcule les lois d'ascension des montgolfières ou l'orbite de la planète Uranus découverte peu avant par Herschel, le savant subit une attaque cérébrale. Ce qui fait simplement dire au philosophe et politologue marquis de Condorcet: «... il cessa de calculer et de vivre.»

*«Euler, un enfant du soleil», Courrier de l'Unesco, oct. 1983.



Pour en savoir plus, lire aussi l'article d'Eric CHANEY "Euler l'a dit!".

jeudi 1 mars 2007

Théorème de Pythagore

Le canal éducatif à la demande (CED) propose une intéressante présentation de 15 minutes sur le théorème de Pythagore.

vendredi 23 février 2007

Instruments mathématiques

Le Museo universitario di Storia Naturale e della Strumentazione Scientifica propose une visite de son laboratoire de mathématiques (en français). On y découvre des instruments permettant par exemple de dessiner le limaçon de Pascal ou des ellipses, un trisecteur, etc. Pour les amoureux des instruments anciens.

jeudi 22 février 2007

Histoire des symboles mathématiques

Earliest Uses of Various Mathematical Symbols propose l'histoire des symboles mathématiques.

lundi 12 février 2007

Tombe d'Henry Perigal

Henry Perigal (1801-1898) était un mathématicien amateur qui est principalement connu pour une élégante preuve de dissection du théorème de Pythagore. Il a peut-être estimé que c'était son accomplissement plus important, puisque son schéma été gravé, vraisemblablement à sa demande, sur sa pierre tombale.


A voir : On the dissecting table

lundi 1 janvier 2007

Euler 2007

2006 fut l'année Mozart, 2007 sera l'année Euler. En effet, le 15 avril 2007 sera le trois-centième anniversaire de la naissance du grand mathématicien et scientifique suisse Leonhard Euler (1707-1783). En Suisse, le site de référence est www.euler-2007.ch.

Biographie d'après Simon Patterson

Leonhard Euler fut l'un des plus grands mathématiciens de tous les temps. Ses nombreux travaux (environ 900 publications) dans beaucoup de domaines ont eu une influence décisive sur le développement des mathématiques, une influence qui est encore ressentie à ce jour.
Euler est né en Suisse, à Bâle, le 15 avril 1707, dans la famille d'un pasteur. À cette époque, Bâle était l'un des principaux centres des mathématiques en Europe. À l'âge de 7 ans, Euler commença l'école tandis que son père engageait un précepteur privé de mathématiques pour lui. À 13 ans, Euler assistait déjà à des conférences à l'université locale, et, en 1723, il obtint son Master, avec une dissertation comparant les systèmes normaux de philosophie de Newton et de Descartes. Selon les souhaits de son père, Euler compléta ses études en s'inscrivant à la faculté de théologie, mais il consacra tout son temps libre à étudier les mathématiques. Il a écrit deux articles sur la trajectoire renversée qui ont été fortement évalués par son professeur Bernoulli. En 1727, Euler postula à un poste de professeur de physique à l'université de Bâle, mais il ne fut pas engagé.
A cette époque, un nouveau centre de la science était apparu en Europe - l'Académie des Sciences de Saint-Pétersbourg. La Russie avait peu de scientifiques et beaucoup d'étrangers furent invités à travailler à ce centre - parmi eux Euler. Le 24 mai 1727, Euler arriva dans Saint-Pétersbourg. Ses grands talents furent vite remarqués. Parmi ses domaines d'activité, on trouve sa théorie de la production de la voix humaine, la théorie de bruit et de la musique, les mécanismes de la vision, et son travail sur la perception télescopique et microscopique. C'est sur la base de ce dernier travail, non édité jusqu'en 1779, que la construction des télescopes et des microscopes ont été rendus possibles.
Il se rend à Berlin en 1741. Là, il travailla à l'académie des sciences de Berlin et fut nommé à la tête de l'observatoire de Berlin, et était également précepteur des nièces du Roi Frédéric II de Prusse.
Les travaux d'Euler n'ont pas été consacrés seulement aux sciences. Un véritable homme de Renaissance, il s'est également impliqué dans les discussions philosophiques du jour, et s'est déclaré croire fermement à la liberté de la volonté. De telles vues eurent peu d'adeptes en Allemagne, et le livre dans lequel il a exprimé ses pensées fut édité pour la première fois en Russie, où Euler retourna en 1766.
En 1763, Catherine II accéda au trône de Russie. Elle effectua des réformes dans l'académie des sciences et en fit un établissement plus prestigieux. Quand Euler retourna à Saint-Pétersbourg avec ses deux fils aînés, on leur donna une maison de deux étages sur les bords de la Néva et Euler occupa un poste à la tête de l'académie des sciences.
Euler a pris un rôle très actif dans l'observation du mouvement de Vénus à travers la face du Soleil, malgré le fait qu'il était alors presque aveugle. Il avait déjà perdu son oeil droit au cours d'une expérience sur la diffraction légère en 1738, puis une cataracte et une opération bâclée en 1771 lui firent perdre la vue presque totalement.
Ceci, cependant, n'arrêta pas le rendement créatif d'Euler. Jusqu'à sa mort en 1783, il plublia pour l'académie plus de 500 travaux. L'académie a continué à les éditer encore un demi-siècle après la mort du grand scientifique. À ce jour, ses théories sont étudiées et enseignées, et ses travaux incroyablement divers font de lui un des pères fondateurs de la science moderne.
Il mourut le 18 septembre 1783 à Saint-Petersbourg d'une hémorragie cérébrale. Il est enterré à Saint-Pétersbourg, à la laure Alexandre Nevsky.

Source : Leonhard Euler Biography
A lire aussi : Leonhard Euler

vendredi 17 novembre 2006

Math93 : Une histoire des mathématiques

Math93 : Une histoire des mathématiques. Site forcément incomplet mais quand même très intéressant, notamment parce que l'histoire des mathématiques y est traitée par thèmes : Alexandrie, les symboles, les nombres, les équations, l'infini, etc. Par contre, un truc qui me dérange beaucoup, c'est la page de pub qui s'affiche quand on arrive sur le site...

mercredi 13 septembre 2006

D'où viennent les degrés pour mesurer les angles ?

Pour répondre à la question de mes élèves : pourquoi le cercle est divisé en 360 degrés et pas plutôt 100 ou autre chose ?

Le degré vient des Babyloniens : ils comptaient en base 60 (sexagésimale). 60 est très commode car il admet beaucoup de diviseurs. Les mathématiciens arabes ont poursuivi et mesuré les angles célestes et terrestres de la même manière. La mesure du temps de cette façon, directement issue des angles astronomiques, en a découlé.
L'année cyclique correspondait à un cercle de 360° (360 jours) et ce cercle était divisé en six parties de 60°. Le cercle a aussi figuré une journée entière puisqu'elle correspondait à un "cycle" du soleil. Elle aussi a été divisée en six : trois sections de jour et trois sections de nuit. Ces sections ont donc été divisées plusieurs fois par deux pour obtenir le découpage en 24 heures, plus précis.
De la même façon, une heure a été divisée en 60 minutes. Remarquons que l'appellation est la même pour les angles : 1 degré est constitué de 60 minutes, ainsi un angle de 1,5° correspond à 1° plus la moitié de 60' donc à 1° et 30 minutes.

Source : 24 pour une journée, 60 pour une heure, pourquoi pas 10 ?

lundi 10 juillet 2006

Chiffres mayas

Les Mayas utilisaient des glyphes comme symboles numériques. Ces glyphes représentaient des têtes de divinité vues de profil. Seuls les chiffres allant de zéro à dix-neuf étaient ainsi représentés. Cela s'explique par le fait que les Mayas avaient adopté une numération vigésimale, c'est-à-dire en base 20.


Cependant, pour les calculs, les Mayas n'utilisaient pas les glyphes, mais des signes très simples: le point pour l'unité, le tiret qui valait cinq points, et une coquille pour le zéro. Les nombres étaient une combinaison de ces trois symboles.

mercredi 17 mai 2006

Femmes mathématiciennes

Les femmes mathématiciennes sont généralement peu connues. Le site Biographies of Women Mathematicians corrige cet état de fait en présentant les biographies de dizaines de mathématiciennes, de l'Antiquité à nos jours.

dimanche 30 avril 2006

Un mathématicien devenu pape

Après la mort de Grégoire V, le 18 février 999, Gerbert d'Aurillac, fils de serf, initié à la science et mathématicien, fut élu Pape et consacré le 2 avril. Il choisit le nom de Sylvestre II en référence à Sylvestre Ier qui fut pape sous l'empereur Constantin Ier qui reconnut le christianisme comme religion de l'Empire romain. Très proche de l'archevêque de Reims Adalbéron, il succéda à celui-ci comme archevêque de Reims. Son érudition était immense; il fut «la lumière de l'Église et l'espoir de son siècle». Ami des empereurs Othon Ier et Othon II, il fut le précepteur du fils de ce dernier (Othon III). Durant son pontificat, il attribua le titre de roi aux souverains chrétiens de Pologne et de Hongrie. Il mourut à Rome le 12 mai 1003 après quatre années de pontificat.
Gerbert d'Aurillac est connu dans le monde scientifique pour avoir rapporté en France le système de numération décimale et le zéro qui y étaient utilisés depuis qu'Al-Khwarizmi les avait rapportés d'Inde et fait diffuser dans l'Empire.
En 967, il se rend en Espagne, auprès du comte de Barcelone, et reste trois ans au monastère de Vich, en Catalogne. Les monastères catalans possèdent de nombreux manuscrits de l'Espagne musulmane, c'est là qu'il s'initie à la science arabe, étudiant les mathématiques et l'astronomie. Il rapporte à la même époque l’astrolabe, d’origine arabe. Il usa de sa position papale pour le faire adopter par les clercs occidentaux. Il faut en effet savoir que vers l'An Mil la pratique de la division (sans usage du zéro!) demandait l'équivalent de ce que nous nommerions aujourd'hui une unité de valeur dans une université.
Il est aussi à l'origine d'un abaque : abaque de Gerbert où les jetons multiples sont remplacés par un jeton unique portant comme étiquette un chiffre arabe (par exemple: les 7 jetons de la colonne unité sont remplacés par un jeton portant le numéro 7, les 3 jetons de la colonne dizaine par un jeton portant le chiffre 3 etc.).
L'usage du comput dans les documents administratifs a pu se développer vers l'An Mil grâce à ces découvertes importantes.
On lui devrait, en outre, l'invention du balancier.

Ce timbre contient un anachronisme: pape en l'An Mil, Sylvestre II porte une tiare datant du 14ème siècle! A cette époque, les papes portaient une coiffure pointue en étoffe blanche, qui sera ornée au 12ème siècle d'un premier anneau d'or. Puis vinrent les deux autres anneaux qui formèrent la tiare telle qu'elle est représentée sur le timbre. En outre les traits du visage sont probablement inexacts, puisqu'on ne connaît aucune gravure de l'époque.

Sources

dimanche 22 janvier 2006

Mathématiciens timbrés

Le site Images of Mathematicians on Postage Stamps répertorie des timbres du monde entier où figurent l'effigie d'un mathématicien ou un sujet mathématique. On peut voir par exemple le timbre édité en ex-URSS pour célébrer le 250e anniversaire de la naissance de Leonhard Euler.


Traduction: "250e anniversaire de l'illustre mathématicien et académicien Leonhard Euler". En arrière-plan, à gauche on reconnaît le Kounstkamera de St-Pétersbourg, ville où Euler a longtemps enseigné. Il est d'ailleurs enterré dans cette ville.
L'année prochaine, on fêtera le 300e anniversaire de sa naissance. Ce sera l'occasion de revenir sur ce grand mathématicien suisse.

< 1 2 3 4 5 6 7 8 9 10 >