Je suis tombé sur ce texte en anglais de Ray Girvan il y a quelques jours. J'en traduis ici les meilleures parties.
Jusqu'à récemment, Udo de Aachen était connu dans les livres d'histoire comme un poète mineur, copiste et essayiste en théologie. Les dates de naissance et de mort de ce moine bénédictin ne sont même pas connues, mais il a probablement vécu entre 1200 et 1270 [1]. Une nouvelle étude de son travail a conduit à sa reconnaissance en tant que mathématicien exceptionnellement original et talentueux.
Bien que Udo lui-même soit peu connu, une de ses oeuvres nous est certainement plus familière. Il est en effet l'auteur d'un poème intitulé Fortuna Imperatrix Mundi, connu sous le nom de Carmina Burana [2]. Orchestré par le compositeur Carl Orff en 1937, le poème d'Udo très connu en tant qu'oeuvre chorale, O Fortuna, a été utilisé par de nombreux médias, de la musique du film "Excalibur" jusqu'à la publicité d'une lotion après-rasage.
La première trace des talents cachés d'Udo a été retrouvée par le mathématicien Bob Schipke, un professeur retraité spécilaliste d'analyse combinatoire. Lors d'une visite à la cathédrale d'Aachen, lieu de sépulture de Charlemagne, Schipke vu quelque chose qui l'intrigua. Dans une crèche minuscule illuminant un manuscrit du 13ème siècle, O Froehliche Weihnacht, il remarqua que l'étoile de Bethléem avait l'air bizarre. En l'examinant dans le détail, il vit que l'image dorée semblait être une représentation de l'ensemble de Mandelbrot, l'une des icônes de l'ère informatique. [3]
Découvert en 1976 par Benoît Mandelbrot, l'ensemble de Mandelbrot est la fractale la plus célèbre. Seul l'avènement des ordinateurs rapides rendit possible l'application des calculs répétitifs induits - du moins c'est ce que l'on pensait. [4]
"J'étais stupéfait", dit Schipke. "C'était comme trouver une photo de Bill Gates dans les Manuscrits de la Mer Morte. Le colophon [la page de titre] indiquait que le nom du copiste était Udo de Aachen, et j'ai voulu en savoir plus sur ce personnage."
Schipke visita la Bavière, où les poèmes Cantiones profanae (désormais les Carmina Burana), ont été découverts en 1837. Rédigé par des spécialistes et des moines errants durant le 13ème siècle, ils ont été rassemblés dans une anthologie dans le monastère bénédictin de Beuron, près de Munich, et Schipke a commencé sa recherche là -bas. Avec l'aide de l'historien Antje Eberhardt de l'Université de Munich, Schipke eut accès à des archives ecclésiastiques, où il a trouvé un document appelé Udolphus Codex. Ecrit en latin, le Codex portait la signature de Udo lui-même.
[..]
Dans un article de 1999, Schipke et Eberhardt parlent des découvertes d'Udo [5]. Le premier chapitre, Astragali, était supposé être un discours sur les méfaits des jeux de hasard. Il s'est avéré être les recherches d'Udo dans ce que nous appelons aujourd'hui la théorie des probabilités. Il a trouvé des règles simples pour ajouter et multiplier les probabilités et conçu ainsi des stratégies pour plusieurs jeux de cartes et de dés.
La deuxième partie, Fortuna et Orbis, décrit comment Udo a déterminé la valeur de pi en lançant des bâtons égaux sur une surface graduée, et en comptant la proportion de bâtons croisant les lignes dessinées sur le sol. C'est une anticipation de la technique des aiguilles de Buffon, nommé d'après le mathématicien du 18ème siècle [6]. Il s'agit d'une méthode très laborieuse, mais Udo réussit à obtenir une estimation respectable -, mais très chanceuse - de 866/275 (3.1418...). Il avait assez confiance en elle pour contester la valeur de pi=3 de la Bible [7] (je dis "chanceuse" parce que la méthode de Buffon converge très mal, et il est bien possible que Udo ait obtenu ce bon résultat en choisissant de s'arrêter judicieusement - peut-être influencé par le 3,1418 cité par son contemporain, Léonard de Pise, aussi connu sous le nom de Fibonacci).
Schipke poursuit: "Ce qui était intéressant à ce moment, c'est que nous avons relu les paroles de O Fortuna, et tout à coup ils prennent tout leur sens. Le verset deux - "Luck / like the moon / changeable in state / We are cast down / like straws upon a ploughed field / Our fates measuring / the eternal circle" - est très clairement une allusion à la méthode des aiguilles de Buffon". [8]
Mais le plus beau était à venir. Dans le dernier chapitre (le plus long), Salus, Schipke a découvert l'oeuvre la plus radicale. Udo avait, semblait-il, étudié l'ensemble de Mandelbrot, sept siècles avant Mandelbrot!
Initialement, l'objectif d'Udo était de concevoir une méthode pour déterminer qui irait au ciel. Il a supposé que l'âme de chaque personne était composée de parties indépendantes qu'il appelait "profanus" (profane) et "animi" (spirituel), et il a représenté ces deux parties par une paire de nombres. Puis il a élaboré des règles pour le dessin et la manipulation de ces paires de nombres. En fait, il a conçu les règles de l'arithmétique complexe, les parties spirituelles et profanes correspondant aux nombres réels et imaginaires des mathématiques modernes.
Dans le Salus, Udo décrit comment il a utilisé ces chiffres: "l'âme de chaque personne subit des essais à travers chacune des 70 années de la vie imparties, [englobant?] sa propre nature, et subit la diminution ou l'augmentation dans la stature par d'autres [qu'elle] rencontre, velléitaire entre le bien et le mal jusqu'à ce que [elle] soit jetée dans les ténèbres du dehors ou amenée pour toujours vers Dieu. "
Lorsque Schipke a lu la traduction, il l'a tout de suite prise pour ce qu'elle était: une description allégorique du processus itératif pour le calcul de Mandelbrot. En termes mathématiques, le système d'Udo était de commencer par un nombre complexe z, puis de l'itérer jusqu'à 70 fois par la règle z -> z*z+c, jusqu'à ce qu'il soit écarté ou pris dans une orbite. [4]
"On a tendance à prendre pour acquis, dit Schipke, "que le calcul de l'ensemble de Mandelbrot est trop compliqué à faire sans ordinateur. Ce que nous devons retenir, c'est la dévotion pure de la vie monastique. Cela a été un travail de foi, et Udo était prêt à travailler pendant des années. Le calcul de certains pixels lentement convergents doit prendre des semaines. "
Pourquoi le travail de ce mathématicien surdoué est passé inaperçu pendant si longtemps? Schipke montre en partie du doigt la spécialisation. "Quand le Codex a été déterré en 1879, seul un non-mathématicien a pu le voir, et il ne savait pas ce qu'il regardait. C'est une histoire assez commune.
"Mais il y avait aussi des raisons contemporaines pour que les connaissances d'Udo ne rentrent pas dans le courant dominant. Sa croyance fondamentale - à savoir que le salut et la damnation pourrait être déterminé à l'avance - était hérétique, et son usage des chiffres arabes a été vu comme de la magie noire. Et il y avait son désaccord avec Thelonius."
[...]
Udo a toujours interprété l'ensemble de Mandelbrot comme Dieu. Thelonius a soutenu le contraire: il représentait le diable. Des chiffres qui s'échappent vers l'infini, selon lui, étaient des âmes volantes libres vers le ciel, et ceux qui sont pris dans une orbite étaient tombés dans la fosse de l'Enfer. Comme de nombreuses collaborations théologiques, cela s'est terminé par un schisme.
Udo a noté que leur différend a mené tous les travaux à l'arrêt, et, que tous les deux ont été réprimandés par l'abbé pour en être venu aux mains dans le réfectoire. "Malheureusement, j'écris", explique Udo [9] à la dernière page du Codex Udolphus, "que, sous peine d'excommunication, je dois laisser mes dés et mes nombres de côté. J'ai jeté un oeil dans un royaume céleste de la complexité, et mon coeur est lourd que la porte soit fermée. "
[...]
Références
[1] "The Benedictine Order: a Historical Miscellany", edited by Rose M Wolanski, Springer-Verlag, 1965.
[2] "Carmina Burana, Frequently Asked Questions", by Charles Cave. http://www.classical.net/music/comp.lst/works/orff-cb/carmina.html
[3] "O froehliche Weihnacht", ms. circa 1250 AD, Aachener Dombibliothek, acquisition nr. GM801-237, Blatt 1a. Photograph by Bob Schipke.
[4] "Chaos: making a new science", James Gleick, Abacus Books, 1989.
Voir aussi the sci-fractals FAQ, maintained by Michael C. Taylor and Jean-Pierre Louvet. (ftp://rtfm.mit.edu/pub/usenet/news.answers/sci/fractals-faq).
[5] Schipke, R.J. and Eberhardt, A. "The forgotten genius of Udo von Aachen", Harvard Journal of Historical Mathematics, 32, 3 (March 1999), pp 34-77.
[6] "Buffon's Needle, an Analysis and Simulation" by George Reese. (http://www.mste.uiuc.edu/reese/buffon/buffon.html).
[7] II Chronicles, iv, 2: "Also he made a molten sea of ten cubits from brim to brim, round in compass ... and a line of thirty cubits did compass it round about" (Authorized King James Version).
[8] Lyrics, translated by William Mann, to Orff's "Carmina Burana (Cantiones profanae)", EMI recording SAN 162, 1965.
[9] Udo of Aachen, http://en.wikipedia.org/wiki/Udo_of_Aachen
© Article original en anglais : Ray Girvan (ray@raygirvan.co.uk) 1.4.1999.