Le blog-notes mathématique du coyote

 

Extra

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.

dimanche 4 novembre 2007

Qui a vraiment écrit le théorème de Pythagore ?

Histoires de savoir - La chronique de Jean-Luc Nothias - Le Figaro - 31 octobre 2007

Bien évidemment, ce n'est pas Pythagore. Ce serait trop simple. Tout comme Archimède et sa baignoire ou Newton et sa pomme, bien des légendes se sont construites au fil du temps. On ne sait même pas si Pythagore s'est un jour intéressé à ce théorème, connu bien avant lui comme le montrent des tablettes babyloniennes en argile, datant de 1800-1700 av. J.-C. On y trouve des séries de chiffres qui satisfont à ce théorème dit de Pythagore. Rappelons qu'il stipule que dans un triangle rectangle, le carré du plus grand côté (l'hypoténuse) est égal à la somme des carrés des deux autres côtés. La fameuse formule a² = b² + c².

On ne sait pas grand-chose de la vie de Pythagore et il n'a laissé aucun écrit direct. Mais qu'il ait été à son époque un « grand » des mathématiques n'est pas contestable. L'époque à laquelle il vivait est d'ailleurs particulièrement riche en grands esprits. Pythagore est né vers 570 av. J.-C. sur l'île de Samos, comme Archimède deux siècles plus tard. Pythagore est contemporain de Confucius et Lao-Tseu, de Bouddha et de Zarathoustra. Mais il ne les connaissait sans doute pas. Après avoir apparemment beaucoup voyagé, il se fixe à Crotone en Calabre, dans le sud de l'Italie (il y mourra vers 480 av. J.-C.). Là, il fonde une espèce de fraternité mystique basée sur les mathématiques et les nombres qui, pensent-ils, sont à la base de l'harmonie universelle. « Tout est nombre » est leur principe et ils attribuent à toute chose un nombre. Ils établissent aussi une correspondance entre les nombres et les mécanismes de la nature. « Les nombres seuls permettent de saisir la nature véritable de l'univers », affirment-ils. Ils croient à la réincarnation, Pythagore lui-même s'estimant la réincarnation d'Euphorbe, un héros troyen. Ils ont des règles de vie strictes comme manger cru et végétarien, ne pas s'habiller de laine ou... ne surtout pas manger de haricots.

Si Pythagore n'est pas l'auteur de « son » théorème, son école a apporté de nombreuses nouveautés en mathématiques. En premier lieu parce que les pythagoriciens avaient une vision du monde très en avance sur leur époque. Ils pensent ainsi, déjà, que la Terre est ronde et que les astres se déplacent sur des cercles concentriques qui obéissent à des lois mathématiques. Il invente ainsi le terme « cosmos » qui veut dire ordre. Ce sont aussi les premiers à développer les démonstrations (le théorème de Pythagore peut aujourd'hui se démontrer de plus de 350 façons différentes). Et ils ont beaucoup étudié les sons et les notes de musique, établissant les harmoniques, les accords et le rapport entre longueurs des cordes et sons.

Disciples déstabilisés

En revanche, ils refusent le zéro, qu'ils apparentent au « vide », de « non-existence » et que donc la nature refuse, et s'empêtrent dans les nombres dits « incommensurables » que l'on appelle aujourd'hui irrationnels. C'est-à-dire que ce ne sont ni des entiers, ni des fractionnaires. Les pythagoriciens ont découvert qu'il est impossible de trouver deux nombres entiers tels que le carré de l'un soit le double du carré de l'autre. Cette question des nombres irrationnels aurait été découverte en constatant que la diagonale d'un carré ne contient pas un nombre entier de fois la longueur du côté du carré : on ne peut pas dire que la diagonale est une fois et demie, ou deux fois, ou deux fois et demie plus longue que le côté. Cela a beaucoup déstabilisé les disciples de Pythagore car cela allait contre leur principe que dans la nature, un nombre est associé à chaque chose. Ils ont quand même beaucoup développé l'arithmétique, ont fondé les bases de la théorie des proportions et étudié les nombres pairs et impairs.

Mais comme de nombreux autres domaines scientifiques, il n'y a pas eu de progression linéaire et constante. Il y a parfois des avancées, parfois des reculs. Au XVIIIe siècle av. J.-C., les Mésopotamiens savaient résoudre des équations du second degré, ainsi que quelques équations du troisième et même du quatrième degré. Deux siècles plus tard, ce savoir se sera apparemment perdu et les Égyptiens ne sauront plus résoudre que des équations du premier degré.

L'histoire du zéro est aussi zigzagante. Si les pythagoriciens refusaient le zéro, longtemps avant eux, les Babyloniens l'utilisaient. Mais dans des formes balbutiantes. Toutes les civilisations, indiennes, mayas et autres, ont, à un moment ou à un autre, flirté avec le zéro. Et le plus difficile pour nous aujourd'hui est d'arriver à comprendre comment on pouvait faire des calculs sans le zéro tel que nous le connaissons, à la fois quantité nulle et chiffre des dizaines, centaines, milliers, etc.

samedi 3 novembre 2007

Os d'Ishango

L' Os d'Ishango, aussi appelé Bâton d'Ishango, daté de près de 23 000 ans avant notre ère, semble être la plus ancienne attestation de la pratique de l'arithmétique dans l'histoire de l'humanité. L'archéologue belge Jean de Heinzelin de Braucourt mit au jour cet ossement en 1950 au bord du lac Édouard dans la région d'Ishango au Congo belge, de nos jours en République démocratique du Congo, près de l'Ouganda. L'ossement est en exposition au Muséum des Sciences naturelles à Bruxelles en Belgique.
Il s'agit d'un os de 10,2 cm provenant d'un animal non identifié, découvert dans des couches de cendres volcaniques, qui possède à son sommet un fragment de quartz enchâssé. Plusieurs entailles se retrouvent organisées en groupe sur trois colonnes. Bien qu'il existe des présomptions de sa nature arithmétique, l’os fait l’objet de nombreuses interprétations.

A voir :