Le blog-notes mathématique du coyote

 

Extra

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.

jeudi 18 mars 2021

Une machine invente des maths jamais vues auparavant

La « machine de Ramanujan » est capable de générer des conjonctures inédites à partir des constantes fondamentales.

Une bonne conjecture exerce une sorte d'attraction magnétique sur l'esprit d'un mathématicien. Il s’agit d’un énoncé mathématique qui est plausible mais qui reste à prouver. Il est toutefois difficile de poser une bonne conjecture. Elle doit être suffisamment profonde pour susciter la curiosité et l'investigation, mais pas obscure au point qu'il soit impossible de l'envisager en premier lieu. Bon nombre des problèmes mathématiques les plus célèbres sont des conjectures, et non des solutions, comme le dernier théorème de Fermat.

Lire l'article de Mordechai Rorvig sur Vice

lundi 1 mars 2021

The Ramanujan Machine

La découverte mathématique est souvent le fruit de deux phases plus ou moins successives: on devine un énoncé, ou plutôt on le soupçonne, puis on en produit une démonstration au terme d’un travail plus ou moins long et laborieux. De manière inhabituelle, les auteurs ont ici confié à l’ordinateur la première tâche, en lançant leurs algorithmes à la poursuite d’identités liant certaines valeurs remarquables telle que la base de l’exponentielle e ou la constante d’Apéry ζ(3) à des fractions continues. Leonard Euler ou Srinivasa Ramanujan sont connus pour avoir imaginé de telles perles (entre autres).
Un grand nombre d’identités ont été proposées par l’ordinateur; certaines ont été retrouvées dans la littérature, d’autres démontrées depuis la première pré-publication; enfin, certaines restent aujourd’hui conjecturales. La liste des formules produites ainsi que leur statut sont maintenus à jour sur la «Ramanujan machine».