En sociologie des sciences, la loi d'éponymie de Stigler, titre d'un article du statisticien Stephen Stigler en 1980, dans le livre Statistics on the Table: The History of Statistical Concepts and Methods de 1999, affirme dans sa forme la plus abrupte :

« Une découverte scientifique ne porte jamais le nom de son auteur. »


Il y a beaucoup d'exemples en mathématiques :
  • La loi de Benford, découverte par Simon Newcomb.
  • Le triangle de Pascal était connu de Zhu Shijie au 13ème siècle.
  • Les formules de Cardan ont été découvertes par Tartaglia.
  • Le nombre d'Euler (e) est défini à la fin du xviie siècle, dans une correspondance entre Leibniz et Christian Huygens.
  • La formule de Stirling a été découverte par de Moivre.
  • Le schéma de Horner, déjà publié par Zhu Shijie vers 1300, et aussi utilisé par Isaac Newton, 150 ans avant Horner.
  • La règle de L'Hôpital est due à Jean Bernoulli.
  • Le déterminant de Vandermonde n'apparaît nulle part dans l'Å“uvre de Vandermonde.
  • En statistique, la correction de Bonferroni est due aux travaux de la mathématicienne Olive Jean Dunn.
  • ...
En donnant son propre nom à cette « loi », Stigler la confirme dès les premières lignes, en affirmant que ce concept est au moins implicite dans les travaux du sociologue américain Robert K. Merton, auquel est dédié le recueil dans lequel l'article est d'abord publié...