mardi 8 février 2022
La loi d'éponymie de Stigler
Par Didier Müller, mardi 8 février 2022 à 10:26 - Histoire des maths
En sociologie des sciences, la loi d'éponymie de Stigler, titre d'un article du statisticien Stephen Stigler en 1980, dans le livre Statistics on the Table: The History of Statistical Concepts and Methods de 1999, affirme dans sa forme la plus abrupte :
Il y a beaucoup d'exemples en mathématiques :
- La loi de Benford, découverte par Simon Newcomb.
- Le triangle de Pascal était connu de Zhu Shijie au 13ème siècle.
- Les formules de Cardan ont été découvertes par Tartaglia.
- Le nombre d'Euler (e) est défini à la fin du xviie siècle, dans une correspondance entre Leibniz et Christian Huygens.
- La formule de Stirling a été découverte par de Moivre.
- Le schéma de Horner, déjà publié par Zhu Shijie vers 1300, et aussi utilisé par Isaac Newton, 150 ans avant Horner.
- La règle de L'Hôpital est due à Jean Bernoulli.
- Le déterminant de Vandermonde n'apparaît nulle part dans l'œuvre de Vandermonde.
- En statistique, la correction de Bonferroni est due aux travaux de la mathématicienne Olive Jean Dunn.
- ...
lu 858 fois