lundi 8 avril 2019
Un mathématicien britannique résout un problème mathématique formulé il y a 64 ans
Par Didier Müller, lundi 8 avril 2019 à 06:48 - Actu
Pendant 64 ans, depuis 1955, un problème mathématique — relativement simple d’apparence — a retenu l’attention des mathématiciens : comment le nombre 33 peut-il être obtenu en additionnant trois nombres élevés au cube ? Un mathématicien britannique a récemment enfin résolu cette énigme à l’aide d’un algorithme informatique.
Bien que cela puisse sembler simple à première vue, cette question fait partie d’une énigme persistante de la théorie des nombres qui remonte au moins à 1955, et a peut-être été évoquée par les penseurs grecs dès le IIIème siècle. L’équation sous-jacente à résoudre ressemble à ceci :
Ceci est un exemple d’équation diophantienne, du nom du mathématicien Diophantus d’Alexandrie, qui a proposé une chaîne d’équations similaires avec plusieurs variables inconnues il y a environ 1800 ans.
Si vous voulez jouer en même temps, choisissez n’importe quel nombre entier compris entre 1 et l’infini — c’est votre valeur k. Maintenant, le défi consiste à trouver les valeurs pour x, y et z qui, lorsqu’elles sont cubées et sommées, sont égales à k. Les nombres mystères peuvent être positifs ou négatifs, et aussi grands ou petits que vous le souhaitez.
Par exemple, si vous avez choisi le nombre 8 comme valeur k, une solution à l’équation est la suivante : 23 + 13 + (-1)3 = 8.
Les mathématiciens ont essayé de trouver autant de valeurs valides que possible pour k depuis les années 1950, et ont découvert que quelques nombres ne fonctionneraient jamais. Tout nombre avec un reste de 4 ou 5 lorsqu’il est divisé par 9, par exemple, ne peut avoir de solution diophantienne. Cela exclut 22 nombres inférieurs à 100. Sur les 78 nombres restants qui devraient trouver des solutions, deux ont bloqué les chercheurs pendant des années : 33 et 42.
Andrew Booker, professeur de mathématiques à l’Université de Bristol, a récemment rayé de la liste l’un de ces nombres. Booker a en effet créé un algorithme informatique pour rechercher des solutions à x3 + y3 + z3 = k, en utilisant des valeurs allant jusqu’à la 1016ème puissance. Booker était à la recherche de nouvelles solutions pour tous les nombres valides inférieurs à 100. Il ne s’attendait pas à trouver la toute première solution pour 33 — mais, quelques semaines plus tard, une réponse était trouvée.
Source: Thomas Boisson, Trust my science
lu 1904 fois