On connaît les critères de divisibilité par 2, 3, 4, 5, 8, 9, 10 et 11. On parle plus rarement du critère de divisibilité par 7 ou 13, qui est commun aux deux nombres.
Soit un nombre N dont on veut tester la divisibilité, on le partage en tranches de trois chiffres à partir de la droite. On ajoute et on soustrait alternativement chacune de ces tranches jusqu’à ce qu’il ne reste plus qu’une tranche de trois chiffres. Si ce nombre de trois chiffres est divisible par 7 ou 13, alors le nombre initial l’est. On ramène ainsi l’examen de la divisibilité par 7 ou 13 de tous les nombres à ceux des nombres de trois chiffres. Il y a encore des calculs à faire, mais ce sont des divisions faciles.

Exemple : 745'857'320.
On mène l’opération décrite : 745 – 857 + 320 = 208, nombre divisible par 13 (13x16). Donc le nombre initial l’est, on vérifie 745'857'320 = 13 * 57'373'640

Cette méthode fonctionne parce que 1001 est divisible par 7 et par 13.