Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.

samedi 21 septembre 2019

Le sophisme de la logique | Bayes 17

vendredi 20 septembre 2019

Deux (deux?) minutes pour la quadrature du cercle

jeudi 19 septembre 2019

Si ceux qui consomment n'osent pas le dire, comment savoir ? - Chat Sceptique

mercredi 18 septembre 2019

Maths en tête

Alexandre Morgan propose une chaîne Youtube nommée Maths en tête. Très intéressante si vous voulez pratiquer la classe inversée au lycée (il y a actuellement 310 vidéos en ligne).

mardi 17 septembre 2019

Identité remarquable

Chères et chers élèves,
Veuillez imprimer et afficher ce poster dans votre chambre, juste à côté de celui de Justin Bieber ou de celui de Nicki Minaj.
Merci

samedi 14 septembre 2019

Ig Nobel 2019 : les bienfaits des pizzas et les dangers des billets de banque

Devançant les prestigieux prix Nobel, les prix Ig Nobel 2019 viennent tout juste d'être décernés. Ils récompensent comme chaque année depuis 1991, des travaux « qui font rire les gens, puis qui les font réfléchir ». Au palmarès : une pizza anticancer, des testicules de postiers, des crottes cubiques et de la salive d'enfants.

Lire l'article de Nathalie Mayer sur Futura

vendredi 13 septembre 2019

Rapématiques

Radouane Abassi (a.k.a. Issaba) est professeur de mathématiques à Épinay sur Seine, et également rappeur. Convaincu que le rap serait un excellent moyen d’attirer les jeunes vers ses cours, il a décidé de mixer le tout, en impliquant ses classes dans la composition et la réalisation des clips.

Voir les vidéos dans l'article de Romain Dujardin sur Images des mathématiques

jeudi 12 septembre 2019

Caméléons tricolores

Une colonie de caméléons contient au départ 20 caméléons rouges, 18 bleus et 16 verts. Lorsque deux caméléons de couleurs différentes se rencontrent, chacun d’entre eux acquiert la couleur restante. Est-il possible qu’après un certain temps, tous les caméléons aient la même couleur ?

Réponse dans l'article de Patrick Popescu-Pampu sur Images des mathématiques

mardi 10 septembre 2019

Le goût de l'élégance : les points fixes des permutations aléatoires

lundi 9 septembre 2019

Le problème des trois cubes enfin résolu

Décomposer un nombre en la somme de trois cubes, ce n'est pas toujours évident. Mais les mathématiciens étaient déjà parvenus à trouver des solutions pour tous les entiers inférieurs à 100. Sauf 42. C'est désormais chose faite.
C'est en 1954 qu'a été posé le problème des trois cubes de la façon suivante : tout nombre entier peut-il s'exprimer comme la somme de trois entiers relatifs élevés au cube ? Ou, dans une écriture plus mathématique, comment trouver x, y et z avec k compris entre 1 et 100 dans l'équation suivante : x3+y3+z3=k.
Les solutions les plus évidentes ont rapidement été trouvées par les chercheurs. Et peu à peu, toutes les valeurs de k ont pu être résolues ou démontrées insolubles. Seules deux valeurs de k continuaient de donner du fil à retordre aux mathématiciens. En début d'année, le professeur Andrew Booker, de l'université de Bristol (Royaume-Uni), a résolu l'énigme pour k=33 en s'appuyant sur des semaines de temps d'un supercalculateur. Mais pour résoudre l'équation pour k=42, l'opération s'annonçait encore plus délicate.
Alors Andrew Booker a fait appel à Charity Engine, une sorte d'ordinateur mondial qui exploite la puissance de calcul inutilisée de plus de 500'000 PC. Une solution qui a tout de même nécessité plus d'un million d'heures de calcul pour en arriver aux valeurs suivantes : x = -80'538'738'812'075'974, y = 80'435'758'145'817'515 et z = 12'602'123'297'335'631.
« Nous n'avions aucune certitude quant à ce que nous allions trouver. Un peu comme lorsque l'on essaie de prédire un séisme. Nous aurions aussi bien pu continuer à chercher cette solution pendant un siècle encore. Mais aujourd'hui, je me sens soulagé », indique Andrew Booker. Ne lui reste plus qu'à se pencher sur la dizaine de décompositions manquantes pour les k inférieurs à 1.000 !

Source : Nathalie Mayer, Futura