Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


samedi 26 novembre 2005

Le nombre d'Erdös

Avec ses 1500 articles (seul Euler en a écrit davantage), les contributions de Paul Erdös aux mathématiques sont nombreuses: en théorie des nombres, en combinatoire, en mathématiques discrètes, il fut un maître. Erdös (1913-1996) avait une exceptionnelle aptitude à poser des questions, et à s'entourer des mathématiciens les plus compétents pour résoudre ses conjectures. Il en résulte que Erdös a eu beaucoup de collaborateurs: 504 mathématiciens ont écrit un article en commun avec lui.
Les mathématiciens se sont amusés à définir un nombre de Erdös: tout mathématicien qui a publié un papier en commun avec Erdös a un nombre de Erdös égal à 1. Toute personne qui a publié un article en commun avec une personne qui a un nombre de Erdös égal à 1 a un nombre de Erdös égal à 2. Et ainsi de suite.... Albert Einstein est l'un d'entre eux: son nombre de Erdös est 2. Actuellement, le nombre d'Erdös le plus grand est 15.
La tableau ci-dessous (tiré du site The Erdös Number Project) montre le nombre de personnes ayant un nombre d'Erdös de 1, 2, 3,..., mais en comptant seulement les articles avec deux coauteurs: c'est le nombre d'Erdös de deuxième espèce ("Erdös numbers of the second kind" en anglais).

Erdös 0 - 1 personne (Paul Erdös, évidemment)
Erdös 1 - 230 personnes
Erdös 2 - 2153 personnes
Erdös 3 - 10118 personnes
Erdös 4 - 28559 personnes
Erdös 5 - 47430 personnes
Erdös 6 - 44102 personnes
Erdös 7 - 25348 personnes
Erdös 8 - 11265 personnes
Erdös 9 - 4299 personnes
Erdös 10 - 1570 personnes
Erdös 11 - 533 personnes
Erdös 12 - 206 personnes
Erdös 13 - 61 personnes
Erdös 14 - 25 personnes
Erdös 15 - 2 personnes

A lire : Paul Erdos : l'homme qui démontrait des théorèmes, par Jean-Pierre Boudine

vendredi 25 novembre 2005

La course sans gagnant

Votre mission consiste à contrôler la finale d'une course. Il faut que les voitures soient positionnées sur la piste de façon à ce qu'elles arrivent toutes à la ligne d'arrivée en même temps.
La tâche sera complexe, car vous devrez étudier adéquatement le mouvement de chacune des voitures pouvant participer à la course de manière à déterminer l'endroit exact où placer vos voitures ainsi que le moment où vous devrez les faire démarrer. Il vous sera possible d'expérimenter avec les voitures avant la course finale (l'évaluation) de façon à posséder toutes les connaissances nécessaires pour contrôler le «bon déroulement» de la course.
Lors de l'évaluation, vous devrez placer les voitures sur la piste de façon à ce qu'elles arrivent à la ligne d'arrivée en même temps qu'une autre voiture déjà placée sur la piste par quelqu'un d'autre.
Pour jouer, allez sur le site La course sans gagnant.
D'autres missions sont proposées sur le site de Patrick Moisan.

mercredi 23 novembre 2005

Sine Qua Non

Sine Qua Non est un traceur de courbes écrit par Patrice Rabiller. Il est destiné spécialement aux professeurs de mathématiques de lycées, mais peut aussi être utilisé avec profit par les élèves. Il permet d’obtenir, très simplement, la courbe représentative de n’importe quelle fonction, ainsi que toute courbe paramétrée plane. Ces courbes peuvent ensuite être imprimées ou copiées dans un autre document (traitement de texte par exemple). Outre les courbes planes, Sine qua non permet de réaliser des figures géométriques planes quelconques, ainsi que des représentations graphiques de séries statistiques à une ou deux variables. Enfin, il est possible de représenter graphiquement les principales lois de probabilité (binomiale, Poisson et Laplace-Gauss), les suites numériques et les intégrales définies.

Mon avis:
Ce logiciel est très simple à utiliser et permet des faire de très belles choses. Son gros défaut: si l'on veut intégrer une courbe dans un traitement de texte, le résultat à l'impression est médiocre, car, pour l'instant en tout cas, on ne peut pas exporter le dessin obtenu, on est obligé de faire un copier-coller.

mardi 22 novembre 2005

Th!nklets

Le site Th!nklets, créé par l'Institut Freudenthal de l'université d'Utrecht, propose des jeux mathématiques, sous forme d'animations.
Le jeu "Find the function" me paraît très intéressant pour apprivoiser les fonctions classiques.

dimanche 20 novembre 2005

Aromath

Aromath est un site entièrement consacré au monde des mathématiques et à leur enseignement. Ce site est maintenu par un groupe d’enseignants de l’académie de Strasbourg. Vous pouvez télécharger, imprimer et diffuser AUPRÈS DE VOS ELEVES tous les documents GRATUITEMENT.

vendredi 18 novembre 2005

Citation

Pascal combattait ses maux de tête avec des problèmes de géométrie... Moi, je combattais la géométrie en feignant d'avoir des maux de tête...

Tristan Bernard

mercredi 16 novembre 2005

Bloog mathématiques appliquées et sciences

Le Bloog mathématiques appliquées et sciences propose des activités autour des logiciels Mathematica et Stella.

mardi 15 novembre 2005

Luca Pacioli


Luca Pacioli (1445-1514) est la figure centrale de cette peinture de (probablement) Jacopo de' Barbari* (1495). La toile est signée "Jaco. Bar".
Pacioli, un frère franciscain, se tient à une table couverte d'outils mathématiques (équerre, compas, modèle de dodécaèdre, etc.) et illustre un théorème d'Euclide, tout en examinant un rhombicuboctaèdre (polyèdre archimédien composé de 26 faces: 18 carrés et 8 triangles équilatéraux) à moitié rempli d'eau. Il est possible que ce polyèdre ait été rajouté après coup par Léonard de Vinci, seul peintre de la Renaissance capable de cette prouesse, et qui était très ami avec Pacioli. Ce solide correspond à la planche XXXV du De Divina Proportione, écrit par Pacioli, illustré par De Vinci et publié à Venise en 1509.
Le gros livre sur lequel repose un dodécaère serait la Summa de Arithmetica, Geometria, Proportioni et Proportionalità, traité encyclopédique des mathématiques rédigé par Pacioli en italien (et non en latin) et publié à Venise en 1494.
Le livre ouvert sur la table est une traduction latine des Eléments d'Euclide, imprimé en 1482 à Venise par Erhald Ratdolt. Nick MacKinnon a même pu identifier la page et le théorème que Pacioli indique: "le carré du côté de l'angle équilatéral est le triple du carré du rayon de son cercle circonscrit". Ceci relie le livre ouvert à la figure de l'ardoise.
Le personnage à gauche de Pacioli serait selon certains Guidobaldo, duc d'Urbino, car le tableau lui est dédié. Cependant, il ne lui ressemble pas. D'autres experts soupçonnent un auto-portrait de l'auteur (M. Davis) ou le portait d'Albrecht Dürer (N. MacKinnon). La rencontre entre Dürer et Pacioli n'est pas démontrée, mais on sait que Dürer était à Venise pendant l'hiver 1494-1495. De plus, Pacioli était aussi à Venise pour la parution de la Summa.
Le Nombre d'Or affirme sa présence dans ce tableau. En effet on peut observer que, si on nomme A et B les extrémités du segment déterminé par le bas du livre ouvert et M le point défini par le pouce gauche de Pacioli, on a : MB/MA=1,6.

A lire: "The portrait of Fra Luca Pacioli" par Nick Mackinnon, The Mathematical Gazette, 77 (1993) pp. 130-219.

dimanche 13 novembre 2005

Jeu vidéo

Merci à Bernadette Evrard, une collègue belge, de m'avoir indiqué cette planche tirée de la BD Kid Paddle:

samedi 12 novembre 2005

Règle des trois

"Règle des trois" pour le calcul différentiel et intégral: les sujets doivent être présentés géométriquement, numériquement et algébriquement. On peut aussi mettre en avant l'aspect verbal ou descriptif pour obtenir la "règle des quatre".

Tiré de l'avant-propos du livre de James Stewart "Analyse, concepts et contextes, volume 1, fonctions d'une variable".

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 >