Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


mardi 11 septembre 2007

La vache - Koh-Lanta

lundi 10 septembre 2007

La répétition à outrance n’aide pas la mémoire

Il y a une longue tradition en enseignement, difficile à déraciner, voulant que l'on apprenne les choses séquentiellement, une à la fois. Mieux encore, on favorise la répétition pour consolider les acquis. Toutefois, une étude publiée dans Current Directions in Psychological Science (Increasing Retention Without Increasing Study Time) indique que la concentration des activités, du moins en ce qui concerne le par coeur, ne favorise en rien la mémoire à long terme (Eureka Alert! : Back to School: Cramming doesn’t work in the long term). Après un mois, il ne reste plus rien de l’effort additionnel.
Par contre, la réactivation des connaissances a un effet positif sur la mémorisation. Dans une autre expérience, les chercheurs ont constaté une hausse des résultats après l’espacement des sessions d’étude. D’un point de vue pédagogique, cela souligne l’importance d’activer les connaissances antérieures.

Source : Relief

dimanche 9 septembre 2007

Galerie Cecconi

Serge Cecconi est un dessinateur humoristique que les maths, entre autres, inspirent. Voir sa galerie.

samedi 8 septembre 2007

Project Sudoku


Le projet sur le Sudoku de l'université des technologies de Graz vient de débuter. L'objectif est de déterminer le nombre minimum de dévoilés (les cases préremplies) pour garantir une solution unique dans une grille de Sudoku. Pour l'instant, seuls les linuxiens peuvent participer. Une application pour Windows et Mac devrait arriver dans les jours à venir.
Le Sudoku est un jeu en forme de grille défini en 1979 et inspiré du carré latin ainsi que du problème des 36 officiers du mathématicien suisse Leonhard Euler. Le but du jeu est de remplir cette grille avec des chiffres allant de 1 à 9 en respectant certaines contraintes, quelques chiffres étant déjà disposés dans la grille. Une question intéressante consiste à se demander quel est le nombre minimum de dévoilés suffisants pour que le Sudoku n'admette toujours qu'une seule solution.
Étonnamment, jusqu'ici, aucune meilleure limite inférieure n'a été obtenue par le raisonnement mathématique. Des recherches ont déjà montré qu'il est possible de construire au moins 41.000 grilles de Sudoku avec 17 dévoilés. Ainsi, aujourd'hui, on peut déjà dire que le nombre minimum de dévoilés pour garantir une solution unique est compris entre 8 et 17.
Un projet s'intéresse déjà au cas d'une grille avec 16 dévoilés, mais il existe 5.472.730.538 solutions (en prenant en compte la symétrie, le réétiquetage, etc.), ainsi cette approche pourrait prendre énormément de temps.
La méthode de travail du projet de l'université de Graz est tout autre. On part d'une grille à 8 dévoilés puis on analyse les 92.248 solutions, si on ne trouve aucune solution unique, on continue en analysant toutes les solutions dans une grille admettant 9 dévoilés, et ainsi de suite jusqu'à 16. Dès l'instant où un utilisateur découvre une solution unique, le projet s'arrête puisque le nombre minimal de dévoilés sera alors déterminé. Si aucune solution unique n'est découverte jusqu'à 16, on pourra dire que 17 est le nombre minimum de dévoilés pour garantir une solution unique.

Voir la description détaillée du projet

vendredi 7 septembre 2007

La vache - la vache begins

jeudi 6 septembre 2007

Fermat - De défis en conjectures

J’en ai découvert une démonstration merveilleuse que cette marge est trop étroite pour contenir.

Cette phrase de Pierre Fermat accompagne l’énoncé de son célèbre théorème, selon lequel il est impossible de trouver des nombres entiers x, y, z tels que xn + yn = zn pour n supérieur à 2. Bien que griffonnée dans la marge d’un ouvrage, elle n’est pas « marginale » dans l’œuvre du mathématicien. Ses lettres et écrits recèlent nombre de formules de ce type, que lui-même excuse en se qualifiant de « paresseux ». Aucune discipline explorée par Fermat n’y échappe, que ce soit la géométrie analytique, les probabilités, la théorie des nombres, ou l’optique. Découvrez comment Fermat, magistrat toulousain, s’imposa, de son vivant, comme l’un des plus grands mathématiciens de son temps, tenant tête à Descartes et correspondant avec Pascal. Son secret ? L’homme était passé maître dans l’art de convaincre.
Également au sommaire : l’astronome Jérôme Lalande, dont on fête le bicentenaire de la mort, les oiseaux de Buffon, joyaux de l’illustration savante du XVIIIe siècle, et le destin tragique d’un module de programmation pour calculatrice HP-41 conçu dans les années 1980, le module Paname.

Voir le sommaire

mercredi 5 septembre 2007

Citation de W. S. Anglin

Les mathématiques ne sont pas une marche tranquille sur une autoroute dégagée, mais un voyage dans un désert étrange, où les explorateurs sont souvent perdus. Il faudrait indiquer à l'historien que les cartes ont été tracées, mais que les vrais explorateurs sont allés ailleurs.

W. S. Anglin

mardi 4 septembre 2007

Naked Geometry

Sur le site Naked Geometry, vous pourrez voir des figures géométriques formées par des personnages virtuels... nus. Mais tout cela reste très sage. Voici la vidéo de présentation :

lundi 3 septembre 2007

Xnumber

James Redin est un passionné de calculatrices et nous parle de sa marotte sur son site Xnumber. On y voit des calculatrices "vintage", des calculatrices en ligne, une histoire des machines à calculer, etc.

dimanche 2 septembre 2007

L'ordinateur n'aiderait pas vraiment les enfants

Voici un article du Daily telegraph qui rend compte d'une étude selon laquelle l'influence de l'utilisation des ordinateurs à l'école et à la maison sur les progrès scolaires des enfants est nulle, voire négative ! Le plus intéressant c'est qu'en ré-analysant les données d'une étude PISA de 2000, les chercheurs se sont aperçus que la conclusion était complètement fausse ! Selon l'étude PISA, plus les enfants avaient d'ordinateurs à la maison, plus ils réussissaient à l'école. Or l'équipement en ordinateur est fortement corrélé aux revenus et au niveau social. Une fois éliminée l'influence du niveau de revenu, celle des ordinateurs était réduite à... zéro. Une telle confusion entre corrélation et causalité dans une étude internationale (PISA influence fortement les politiques des pays européens en matière d'éducation) peut sembler étonnante, alors qu'on est en droit d'attendre qu'un lycéen moyen comprenne cette nuance (c'est en effet un objectif du Lycée). Mais le discours pro-ordinateur est agréable à l'oreille des politiques : lancer une grande campagne d'équipement en informatique c'est tellement médiatique et tellement moins coûteux que de recruter des enseignants bien formés... Alors, si vous allez dans ce sens, personne n'ira regarder vos résultats de trop près.

Source : Mathéphysique

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 >