Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


lundi 5 novembre 2007

Faire un cours de maths gratuitement

Je crois que j'ai enfin trouvé une bonne solution pour produire un cours de maths, et en plus gratuitement. En tout cas, c'est celle que je teste depuis quelques semaines. Le résultat à l'impression me satisfait entièrement (je précise que mes élèves impriment mon cours chez eux).

  1. Pour le traitement de texte : OpenOffice (modules writer et math), avec le plug-in Dmaths pour les formules de maths
  2. .
  3. Pour les graphes des fonctions : Orge. On peut exporter les images au format jpg et les retoucher avec GIMP
  4. Comme tableur, toujours OpenOffice (module calc).
  5. Enfin, avant de se lancer dans un dessin difficile, toujours regarder sur le web si ce dessin n'existe pas déjà, en particulier sur Wikipédia.
Et vous, comment faites-vous ?

dimanche 4 novembre 2007

Qui a vraiment écrit le théorème de Pythagore ?

Histoires de savoir - La chronique de Jean-Luc Nothias - Le Figaro - 31 octobre 2007

Bien évidemment, ce n'est pas Pythagore. Ce serait trop simple. Tout comme Archimède et sa baignoire ou Newton et sa pomme, bien des légendes se sont construites au fil du temps. On ne sait même pas si Pythagore s'est un jour intéressé à ce théorème, connu bien avant lui comme le montrent des tablettes babyloniennes en argile, datant de 1800-1700 av. J.-C. On y trouve des séries de chiffres qui satisfont à ce théorème dit de Pythagore. Rappelons qu'il stipule que dans un triangle rectangle, le carré du plus grand côté (l'hypoténuse) est égal à la somme des carrés des deux autres côtés. La fameuse formule a² = b² + c².

On ne sait pas grand-chose de la vie de Pythagore et il n'a laissé aucun écrit direct. Mais qu'il ait été à son époque un « grand » des mathématiques n'est pas contestable. L'époque à laquelle il vivait est d'ailleurs particulièrement riche en grands esprits. Pythagore est né vers 570 av. J.-C. sur l'île de Samos, comme Archimède deux siècles plus tard. Pythagore est contemporain de Confucius et Lao-Tseu, de Bouddha et de Zarathoustra. Mais il ne les connaissait sans doute pas. Après avoir apparemment beaucoup voyagé, il se fixe à Crotone en Calabre, dans le sud de l'Italie (il y mourra vers 480 av. J.-C.). Là, il fonde une espèce de fraternité mystique basée sur les mathématiques et les nombres qui, pensent-ils, sont à la base de l'harmonie universelle. « Tout est nombre » est leur principe et ils attribuent à toute chose un nombre. Ils établissent aussi une correspondance entre les nombres et les mécanismes de la nature. « Les nombres seuls permettent de saisir la nature véritable de l'univers », affirment-ils. Ils croient à la réincarnation, Pythagore lui-même s'estimant la réincarnation d'Euphorbe, un héros troyen. Ils ont des règles de vie strictes comme manger cru et végétarien, ne pas s'habiller de laine ou... ne surtout pas manger de haricots.

Si Pythagore n'est pas l'auteur de « son » théorème, son école a apporté de nombreuses nouveautés en mathématiques. En premier lieu parce que les pythagoriciens avaient une vision du monde très en avance sur leur époque. Ils pensent ainsi, déjà, que la Terre est ronde et que les astres se déplacent sur des cercles concentriques qui obéissent à des lois mathématiques. Il invente ainsi le terme « cosmos » qui veut dire ordre. Ce sont aussi les premiers à développer les démonstrations (le théorème de Pythagore peut aujourd'hui se démontrer de plus de 350 façons différentes). Et ils ont beaucoup étudié les sons et les notes de musique, établissant les harmoniques, les accords et le rapport entre longueurs des cordes et sons.

Disciples déstabilisés

En revanche, ils refusent le zéro, qu'ils apparentent au « vide », de « non-existence » et que donc la nature refuse, et s'empêtrent dans les nombres dits « incommensurables » que l'on appelle aujourd'hui irrationnels. C'est-à-dire que ce ne sont ni des entiers, ni des fractionnaires. Les pythagoriciens ont découvert qu'il est impossible de trouver deux nombres entiers tels que le carré de l'un soit le double du carré de l'autre. Cette question des nombres irrationnels aurait été découverte en constatant que la diagonale d'un carré ne contient pas un nombre entier de fois la longueur du côté du carré : on ne peut pas dire que la diagonale est une fois et demie, ou deux fois, ou deux fois et demie plus longue que le côté. Cela a beaucoup déstabilisé les disciples de Pythagore car cela allait contre leur principe que dans la nature, un nombre est associé à chaque chose. Ils ont quand même beaucoup développé l'arithmétique, ont fondé les bases de la théorie des proportions et étudié les nombres pairs et impairs.

Mais comme de nombreux autres domaines scientifiques, il n'y a pas eu de progression linéaire et constante. Il y a parfois des avancées, parfois des reculs. Au XVIIIe siècle av. J.-C., les Mésopotamiens savaient résoudre des équations du second degré, ainsi que quelques équations du troisième et même du quatrième degré. Deux siècles plus tard, ce savoir se sera apparemment perdu et les Égyptiens ne sauront plus résoudre que des équations du premier degré.

L'histoire du zéro est aussi zigzagante. Si les pythagoriciens refusaient le zéro, longtemps avant eux, les Babyloniens l'utilisaient. Mais dans des formes balbutiantes. Toutes les civilisations, indiennes, mayas et autres, ont, à un moment ou à un autre, flirté avec le zéro. Et le plus difficile pour nous aujourd'hui est d'arriver à comprendre comment on pouvait faire des calculs sans le zéro tel que nous le connaissons, à la fois quantité nulle et chiffre des dizaines, centaines, milliers, etc.

samedi 3 novembre 2007

Os d'Ishango

L' Os d'Ishango, aussi appelé Bâton d'Ishango, daté de près de 23 000 ans avant notre ère, semble être la plus ancienne attestation de la pratique de l'arithmétique dans l'histoire de l'humanité. L'archéologue belge Jean de Heinzelin de Braucourt mit au jour cet ossement en 1950 au bord du lac Édouard dans la région d'Ishango au Congo belge, de nos jours en République démocratique du Congo, près de l'Ouganda. L'ossement est en exposition au Muséum des Sciences naturelles à Bruxelles en Belgique.
Il s'agit d'un os de 10,2 cm provenant d'un animal non identifié, découvert dans des couches de cendres volcaniques, qui possède à son sommet un fragment de quartz enchâssé. Plusieurs entailles se retrouvent organisées en groupe sur trois colonnes. Bien qu'il existe des présomptions de sa nature arithmétique, l’os fait l’objet de nombreuses interprétations.

A voir :

vendredi 2 novembre 2007

Théorème de Morley

Le théorème de Morley, découvert par Frank Morley en 1898, est un théorème de géométrie.
Soit ABC un triangle quelconque. On trace les trissectrices de ses angles. Leurs intersections se coupent pour former un triangle équilatéral PQR.


Des démonstrations sont présentées sur Wikipédia.

jeudi 1 novembre 2007

Ruban de Möbius

Superbe vidéo sur le ruban de Möbius que j'ai découverte ce matin sur Blog à Maths.

mercredi 31 octobre 2007

La vache - Les albinos

mardi 30 octobre 2007

Citation de Russell (2)



Pour créer une saine philosophie, il vous faudrait renoncer à la métaphysique, et devenir seulement un bon mathématicien.

Bertrand Arthur William Russell

lundi 29 octobre 2007

Toujours 9

Considérons les 4 chiffres composant l'année 1694, soit 1, 6, 9 et 4 et réordonnons-les de manière totalement aléatoire pour former un autre nombre de 4 chiffres. Supposons que l'on parvienne à 9641, on soustrait alors le plus petit de ces 2 nombres au plus grand, c'est-à-dire ici 9641 - 1694; on trouve alors 7947. Additionnons les 4 chiffres obtenus: 7+9+4+7 = 27. Recommençons jusqu'à n'avoir plus qu'un seul chiffre: 2+7=9. On aboutit donc à 9.
Rien d'extraordinaire me direz-vous.
On aurait cependant obtenu le même résultat avec un autre arrangement, par exemple 1496 ou 4691, etc.
On aurait obtenu également le même résultat en partant d'un autre nombre de base. En fait, on aurait même pu former un nombre de base plus grand, en incluant le mois et le jour.
Maintenant, faites l'essai avec votre propre date de naissance. Y a-t-il une raison pour arriver systématiquement au chiffre 9 ?

dimanche 28 octobre 2007

Anis étoilé

C'est peut-être idiot, mais je suis resté ébahi quand j'ai vu la forme de l'anis étoilé (aussi appelé badiane). Qui a dit qu'il n'y avait pas de maths dans la nature ?

samedi 27 octobre 2007

Euler le Magnifique

Voici l'enregistrement de l'émission SONAR, diffusée le 1er juillet 2007 sur la radio suisse Espace 2. Cette émission de deux heures (!) était consacrée à Euler. Un grand merci à Anne-Marie Rhyn, animatrice de l'émision, qui m'a fait parvenir les fichiers mp3.

Evocation de la vie et de l'œuvre considérable du grand mathématicien bâlois.

"Incomparable géomètre", "le plus grand mathématicien de son temps", "le prince des mathématiques", … Les superlatifs ne manquent pas pour désigner Leonhard Euler. Il est vrai que son œuvre est impressionnante: des centaines de textes - articles et livres - sur les questions mathématiques les plus diverses et également sur des sujets de physique, d'astronomie, d'optique, de géographie, sur des problèmes pratiques concernant l'artillerie ou la navigation, sur des curiosités qui intéressaient le public savant de son époque (les carrés magiques, les jeux de damier ou de cartes, ses célèbres "ponts de Königsberg"). Dans cette production prolifique, beaucoup de découvertes qui ont marqué l'histoire des mathématiques.

On en oublierait presque que Leonhard Euler n'était pas seul, qu'il doit beaucoup à ses collègues bâlois de la famille Bernoulli, qu'il s'inscrit dans le grand mouvement scientifique des Lumières, qu'il a beaucoup échangé avec les savants de son temps, et que son activité aux Académies de Saint-Pétersbourg et de Berlin l'a mis en relation avec l'Europe entière.
L'image du sédentaire, fou de travail, qui finit isolé dans la cécité, mérite donc d'être réévaluée.

avec:

  • Gerhard Wanner, mathématicien, professeur à l'Université de Genève
  • Pierre-Alain Cherix, mathématicien, maître d'enseignement et de recherche à l'Université de Genève
  • Siegfried Bodenmann, historien des sciences, qui travaille sur la Correspondance d'Euler et a collaboré au livre de Philippe Henry, Leonhard Euler: "incomparable géomètre" (éd. M&H /MHS)
  • Srishti Chatterji, mathématicien, éditeur des Lettres à une princesse d'Allemagne (éd. PPUR)
  • Pierre Cartier, mathématicien, professeur à l'Université de Paris-Jussieu (intervention dans le cadre du séminaire Musique et mathématiques de l'ENS)
  • Lectures: Yves Jenny
Par Anne-Marie Rhyn, avec la collaboration de Didier Rossat

Ecouter la première partie (mp3, 52 minutes)
Ecouter la seconde partie (mp3, 68 minutes)

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 >