Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


mardi 31 juillet 2007

Blog à Maths

Décidément, les blogs de maths fleurissent avec l'été. En voici encore un nouveau : blog à maths.

lundi 30 juillet 2007

David Eppstein

Le site de David Eppstein regorge d'articles intéressants sur la théorie des nombres, la géométrie et les jeux combinatoires.

dimanche 29 juillet 2007

Des maths chez les Simpsons

Croyez-le ou non, il y a aussi des maths chez les Simpsons! Les épisodes sont répertoriés dans simpsonsmath.com.

samedi 28 juillet 2007

Apprendre Maple

Le forum Apprendre Maple permet de poser des questions sur ce logiciel de mathématiques.

A voir aussi :

vendredi 27 juillet 2007

Citation de Darboux


Je compterai toujours, pour ma part, au nombre des heures les plus douces, les plus heureuses de ma vie, celles où j'ai pu saisir dans l'espace et étudier sans trève quelques-uns de ces êtres géométriques qui flottent en quelque sorte autour de nous.

Gaston Darboux

mardi 24 juillet 2007

Eternity II

Une prime de 1,45 million d'euros promise au joueur qui résoudra l'énigme d'Eternity II
Article du Monde, 23 juillet 2007

La simplicité apparente du plateau de 16 fois 16 cases et ses 256 pièces colorées ne doit pas faire illusion. Eternity II, casse-tête mathématique dont le lancement est prévu le 28 juillet dans vingt pays, est un jeu d'une extrême complexité. D'ailleurs, le premier joueur qui sera capable de résoudre cette vaste énigme en forme de puzzle recevra un prix de deux millions de dollars, soit 1,45 million d'euros. Le jeu sera disponible au prix de 50 euros environ.


Eternity II est composé de petites pièces carrées dont chacune est divisée en quatre parties colorées, ornées de motifs géométriques distincts. Pas question de reconstituer un paysage ou une photo, le but du jeu consiste à faire correspondre toutes les pièces de tous côtés. Un peu comme aux dominos, il faut faire correspondre couleurs et formes pour placer côte à côte deux pièces du puzzle.
Il existe des milliers de combinaisons gagnantes possibles, mais aucune machine ou aucun ordinateur ne saurait les résoudre car le codage de l'énigme invoque la mathématique des nombres complexes, l'analyse combinatoire, la théorie des probabilités, mais aussi et surtout la théorie des pavages dits quasi périodiques, dont l'un des grands découvreurs, Roger Penrose, n'a jeté les fondements qu'en 1974.
Pour mettre au point Eternity II, il a fallu avoir recours à la physique des quasi-cristaux, mais aussi à la statistique et aux mathématiques dites "discrètes" dont le succès tient à leurs applications dans la sphère informatique. Jusqu'au dernier moment et au dernier placement de la 256e pièce, nul ne pourra dire s'il est proche ou loin de la solution.

UNE PREMIÈRE VERSION EN 1999

Christopher Monckton, 55 ans, le créateur de ce jeu d'assemblage un peu particulier digne des figures impossibles d'Escher, n'en est pas à son coup d'essai. Le créateur d'Eternity avait déjà défriché le concept avec le premier Eternity lancé en 1999. Ce casse-tête composé de 209 pièces de formes différentes s'est écoulé à plus de 500 000 exemplaires et était déjà associé à une récompense d'1 million de livres sterling (1,48 million d'euros). Deux étudiants en géométrie et recherche combinatoire de Cambridge parvinrent, après sept mois de travail et l'aide de deux micro-ordinateurs et un programme d'intelligence artificielle, à résoudre l'énigme. Ils empochèrent la récompense et se firent embaucher par l'inventeur, qui, ruiné, dut vendre son manoir afin de développer le jeu suivant.
Le vicomte Christopher Monckton, diplômé de Cambridge, qui fut journaliste puis conseiller politique de Margaret Thatcher, s'est découvert une passion pour les mathématiques et les puzzles. Devenu célèbre avec Eternity, ce vicomte britannique, officier de l'ordre de Jérusalem et chevalier de l'ordre de Malte, est surtout connu en Angleterre pour ses grilles géantes de sudoku. Ses conseils pour résoudre Eternity II : "Lisez la question, ne paniquez pas, procédez par étapes, persévérez, et, surtout, unissez vos efforts." Le dépouillement des résultats est prévu le 31 décembre 2008.

A voir : le site officiel d'Eternity II

Petite note personnelle: où y a-t-il des nombres complexes là-dedans ?

lundi 23 juillet 2007

Carton !

En visite chez ma soeur dans le canton de Fribourg, j'en ai profité pour aller à un loto, ce que je ne fais qu'une ou deux fois par an. Et là, incroyable, pour la première fois depuis une quinzaine d'années, j'ai enfin pu crier "carton !". Mais la loi de Murphy était toujours là, et on était cinq à crier en même temps (ce qui n'est arrivé qu'une fois dans la soirée), si bien que je n'ai eu qu'un cinquième du prix...



Je pense qu'il y a pas mal de questions à se poser en classe autour du loto : comment générer une grille, comment faire pour que les grilles soient les plus différentes possibles, comment le risque de cartons multiples augmente avec le nombre de numéros tirés, combien faut-il tirer en moyenne de numéros pour avoir une quine, une double quine ou un carton, est-ce que les tirages sont vraiment aléatoires (à cause de la façon dont les numéros sont remis dans le sac), etc.

samedi 21 juillet 2007

Pi in the sky

Pi in the sky est une revue canadienne anglophone paraissant deux fois l'an pour les lycéens, ayant pour but de promouvoir les mathématiques, d'établir un contact direct entre les professeurs et les élèves, d'augmenter l'implication des élèves de lycées dans les activités mathématiques, et de promouvoir les carrières en mathématiques.

vendredi 20 juillet 2007

Vie de Clairaut

Alexis Clairaut est l'un des plus grands mathématiciens de son temps. Il lit son premier mémoire à l'Académie des sciences alors qu'il n'a pas treize ans, devient académicien à dix-huit ans, participe à l'expédition en Laponie destinée à vérifier l'aplatissement de la Terre aux pôles, détermine par le calcul le mouvement de la Lune et le retour de la comète de Halley.
Le cœur du site www.clairaut.com est une base de données sur la vie de Clairaut dont les enregistrements sont progressivement mis en ligne.

jeudi 19 juillet 2007

Seul contre tous

Voici un problème qui me turlupine depuis que Gilles Jobin l'a posté sur son blog. Les Blancs sont au trait. Il ne fait pas de doute qu'ils gagneront facilement la partie. La question est cependant de savoir le nombre minimum de coups nécessaires pour mater l'adversaire. On suppose évidemment que les deux adversaires jouent le mieux possible.

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 >