Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.

mercredi 4 mars 2009

Faire des maths pour trouver un bon job

Dans un article récent de Wall Street Journal « Doing the Math to Find the Good Jobs », on peut trouver les résultats d’un sondage sur l’attractivité des différents métiers aux États-Unis. Et, pour la première fois, les statistiques s’accordent à dire qu’aujourd’hui le meilleur métier serait celui de « mathématicien(ne) ». Il est suivi par « actuaire » et « statisticien(ne) ». La hiérachie établie par CareerCast.com a pris en compte le cadre du travail, les revenus, l’effort (physique) demandé ainsi que le stress qu’il peut causer.
Dans un contexte social très animé (pour ne pas dire tendu) depuis quelques semaines, voici, enfin, une bonne nouvelle pour les matheux et, plus généralement, pour les scientifiques. Car « faire des maths » est devenu une profession respectable, enviée et qui donne pleine satisfaction non seulement aux yeux des mathématiciens mais aussi à ceux qui ne la pratiquent pas (tous les jours, voire même pas du tout). Ceci est d’autant plus valorisant que le cliché vehiculé le plus souvent pour le mathématicien était celui du personnage distrait et rêveur, vivant en marge de la société à cause de ses préoccupations purement abstraites. Désormais ça sera peut-être chic d’être mathématicien...
Ce qui distingue les trois premières positions dans ce classement n’est pas la satisfaction d’ordre intellectuel que l’exercice du métier pourrait nous procurer mais le niveau des revenus. Le salaire annuel médian d’un mathématicien est d’environ 94160 $ selon cette étude, de 88146 $ pour un actuaire et respectivement de 72197 $ pour un statisticien. Ces chiffres sont en corrélation avec les études menées dans les universités américaines. Mais il faut savoir qu’aux États-Unis un nombre important de mathématiciens (c’est-à-dire des personnes ayant suivi une formation universitaire en mathématiques) sont attirés et employés en dehors du milieu académique, dans la finance, l’industrie, les assurances etc., contrairement à ce qui se passe habituellement en Europe. En effet, le mathématicien est défini (pour les propos de cette étude) comme celui ou celle qui applique des théories et des formules mathématiques pour enseigner et/ou résoudre des problèmes mathématiques, soit dans le processus éducatif soit dans un cadre industriel, financier ou commercial. Il va de soi que ceux qui créent et étudient les théories en questions sans pour autant chercher des applications immédiates trouveront leur place également parmi les premiers, bien qu’ils soient moins nombreux.
Ce n’est pas la première fois que les matheux se retrouvent bien classés. Le top des meilleurs emplois en 2007 donnait gagnant le métier de « biologiste » devant celui d’« actuaire » et d’« analyste financier » lequel devançait de quelques places seulement celui de « mathématicien ». Une apparition constante est l’« actuariat » qui loge aux premiers rangs depuis que ce genre de statistiques existent.
La valeur d’un tel classement est bien sûr toute relative. Tout ce que j’espère est que le soudain intérêt suscité par ce métier n’est pas présage de malheur. En 1999 « webmestre » figurait à la première place du top devant « actuaire » et « informaticien » et ça se passait peu avant que la grande bulle internet n’explose et les valeurs « nouvelles technologies » ne s’effondrent en bourse.

Source : Images des mathématiques

lundi 2 mars 2009

Le moulin à eau de Lorenz

Edward Lorenz (1917-2008) n’était ni mathématicien, ni informaticien, ni physicien, ni météorologue, mais il était tout cela à la fois : un grand scientifique qui a laissé beaucoup de travail pour toutes ces professions. Il a même inventé un moulin à eau pour expliquer clairement ses idées sur le chaos...

Un très bel article sur le chaos avec de superbes animations sur le site Images des mathématiques.

mardi 24 février 2009

Pour la Science 377


Le numéro 377 de Pour la Science est particulièrement intéressant pour les mathématiciens, car il contient trois articles sur les maths :

  • Les mathématiciens responsables ? (à propos de la crise)
  • L'hypothèse de Riemann : Il y a un siècle et demi, le mathématicien allemand Bernhard Riemann énonça une conjecture devenue célèbre sous le nom d'hypothèse de Riemann. Aujourd’hui, sa démonstration fait toujours défaut et constitue l’un des grands problèmes ouverts des mathématiques. Elle est même mise à prix un million de dollars. Mais pourquoi la conjecture de Riemann est-elle si importante ? C'est que la « fonction zêta de Riemann », qui en est au cœur, concentre en elle de nombreux résultats de la théorie des nombres, en particulier dans l'étude des nombres premiers.
  • Stratégies magiques au pays de Nim. L'article de Jean-Paul Delahaye.

lundi 23 février 2009

Accromaths Hiver-printemps 2009

Le volume 4.1 (Hiver-printemps 2009) de l'excellente revue en ligne québequoise Accromaths (très bon titre au passage) est sorti. A déguster sans retenue, surtout qu'il y a un article sur Euler, mon mathématicien préféré.

mardi 9 décembre 2008

Le Jura dans Mathematice

Le Jura (Suisse) est à l'honneur dans le dernier numéro de Mathematice avec deux articles : un bilan maths-mitic dans le canton du Jura écrit par mon cousin (eh oui!) et un article de votre humble serviteur sur le site apprendre-en-ligne.net.
Et dire que certains pensent qu'il ne se passe rien dans le Jura. Je pense à une réunion à Lausanne qui me reste en travers de la gorge où une intervenante (dont je tairai le nom par politesse) montre un graphique qui laisse à croire que le Jura est à la traîne en informatique dans les écoles. Après une interruption vigoureuse de ma part, elle avoue qu'en fait elle n'a aucune idée de ce qu'on fait...

mercredi 12 novembre 2008

Vérifier les démonstrations par ordinateur

Vérifier sans faille les démonstrations mathématiques par ordinateur

De nouveaux outils informatiques pourraient révolutionner la pratique des mathématiques en fournissant les démonstrations les plus fiables ayant jamais été produites. Ces outils, basés sur la notion de "preuve formelle", ont été utilisés ces dernières années pour donner des démonstrations presque infaillibles de nombreux résultats importants en mathématiques. Une série de quatre articles écrits par des experts reconnus, et qui vient d'être publiée dans les Notices of the American Mathematical Society, explore des développements nouveaux dans l'utilisation de la preuve formelle en mathématiques.

Lorsque les mathématiciens démontrent des théorèmes de manière traditionnelle, ils présentent leurs arguments sous forme narrative. Ils assument des résultats précédents, ils glissent sur des détails qu'ils pensent que les autres experts comprendront, ils prennent des raccourcis pour rendre la présentation moins pénible, ils font appel à l'intuition, etc. L'exactitude des arguments est déterminée par l'examen minutieux effectué par d'autres mathématiciens, au cours de discussions informelles, lors de conférences, ou dans des articles. Il est important de se rendre compte que les moyens par lesquels les résultats mathématiques sont vérifiés constituent essentiellement un procédé social donc faillible. Quand elle concerne un résultat primordial et bien connu, la démonstration est particulièrement bien contrôlée et des erreurs sont éventuellement trouvées. Cependant l'histoire des mathématiques a connu des résultats faux qui sont restés longtemps non décelés. En outre, pour quelques cas récents, des théorèmes importants exigeaient des démonstrations tellement longues et complexes que très peu de gens ont le temps, l'énergie, et le fond de connaissance nécessaire pour en vérifier l'exactitude par eux-mêmes. Enfin, certaines démonstrations contiennent un code informatique considérable pour, par exemple, vérifier de nombreux cas qu'il serait impossible de contrôler à la main. Comment les mathématiciens peuvent-ils alors être sûrs que de telles démonstrations soient fiables ?

Pour venir à bout de ces problèmes, des informaticiens et des mathématiciens ont commencé à développer le domaine de la preuve formelle. Une preuve formelle est une démonstration dans laquelle chaque inférence logique est systématiquement contrôlée vis-à-vis des axiomes fondamentaux des mathématiques. Les mathématiciens n'écrivent habituellement pas ces preuves formelles parce qu'elles sont si longues et "encombrantes" qu'il serait impossible de les faire vérifier par des mathématiciens humains. Mais on peut désormais obliger des "assistants informatiques" à procéder à ce contrôle. Ces dernières années, ces assistants sont devenus assez puissants pour manipuler des démonstrations complexes.

Dans quelques cas simples uniquement on peut donner un énoncé à l'ordinateur et s'attendre à ce que celui-ci fournisse une démonstration de lui-même. En règle générale, le mathématicien doit savoir démontrer cet énoncé ; la démonstration est ensuite exposée avec la syntaxe spécifique de la preuve formelle, chaque étape étant définie, et c'est cette preuve formelle que l'ordinateur contrôle. Il est également possible de laisser l'ordinateur explorer des mathématiques qui lui soient propres: il est arrivé dans certains cas que la machine propose des conjectures intéressantes qui étaient passées inaperçues aux mathématiciens. Nous sommes peut-être proches d'un temps où nous verrons les ordinateurs, plutôt que les êtres humains, faire des mathématiques.

Les quatre articles de Notices explorent la situation actuelle de la preuve formelle et fournissent des conseils pratiques pour l'utilisation de ces assistants informatiques. Si l'usage de ces aides se répand, ils pourraient changer profondément les mathématiques telles qu'elles sont actuellement pratiquées. Un rêve à long terme serait de posséder les démonstrations formelles de tous les théorèmes centraux des mathématiques. Thomas Hales, un des auteurs, indique qu'un tel ensemble de démonstrations serait apparentée au "séquencement du génome mathématique".

Les quatre articles sont:

  • Formal Proof, par Thomas Hales, université de Pittsburgh
  • Formal Proof - Theory and Practice, par John Harrison, Intel Corporation
  • Formal proof - The Four Colour Theorem, par Georges Gonthier, Recherche Microsoft, Cambridge, Angleterre
  • Formal Proof - Getting Started , par Freek Wiedijk, université de Radboud, Nimègue, Pays-Bas
Ces articles paraissent dans l'édition de décembre 2008 de Notices et sont en consultation libre sur le site de l'AMS.

Source : techno-sciences.net

jeudi 6 novembre 2008

Les Mathématiques en 14 mots-clés



La revue La Recherche publie un numéro Hors Série intitulé "Les Mathématiques en 14 mots-clés". Ce numéro est en fait une compilation des "Bac to basics" mathématiques déjà publiés dans la revue.

Les 14 mots-clés choisis sont : les nombres premiers, les nombres complexes, pi et la quadrature du cercle, les polynômes, les fonctions, les intégrales, le point, le triangle, les graphes, les algorithmes, le programme, la simulation numérique, le hasard, les sondages.

vendredi 22 août 2008

Les Génies de la Science : Gauss

La revue Les Génies de la Science propose un numéro spécial sur Gauss, le prince des mathématiques. Un numéro à ne pas manquer !

Avant-Propos

Gauss a 24 ans quand il se voit couronné « prince des mathématiques » par des savants de toute l’Europe. La raison de ce succès ? Des contributions majeures en théorie des nombres – la « reine des mathématiques » selon lui – rassemblées dans un ouvrage qui deviendra une référence, les Disquisitiones arithmeticae.
L’expression « Titan des sciences » employée par son biographe G. W. Dunningon le désigne tout aussi bien. Son éclectisme et sa passion pour les sciences l’entraînèrent non seulement vers les mathématiques, mais vers nombre d’autres domaines : Gauss fut ainsi l’inventeur d’instruments tels que l’héliotrope, le magnétomètre bifilaire ou le télégraphe électromagnétique ; il élabora aussi des théories ad hoc pour résoudre divers problèmes de physique appliquée, comme sa célèbre formule d’optique caractérisant une lentille ou un assemblage de lentilles.
Cette faculté d’embrasser plusieurs disciplines lui permit de révéler les liens profonds qui les unissent. Elle lui inspira des théories mathématiques qui, aujourd’hui encore, sont couramment utilisées dans les sciences appliquées : grâce à sa méthode des moindres carrés, un des fondements de la théorie moderne des erreurs, Gauss optimisa les observations astronomiques et géodésiques ; de ses études en géodésie, en particulier de ses recherches sur la construction de cartes géographiques, naquit la théorie de la représentation conforme, étroitement liée à l’analyse complexe ; Gauss sut encore voir les liens entre la géodésie et la théorie des surfaces, une théorie qui, à son tour, le renvoya à ses réflexions de jeunesse sur la possibilité d’élaborer une géométrie non euclidienne.
Gauss considérait les mathématiques comme la science par excellence, le fondement naturel de toute science appliquée : « Toutes les mesures du monde ne valent pas un seul théorème, car seul ce dernier fait réellement avancer la science des vérités éternelles », écrivait-il à son ami Bessel. C’est bien ce que montre son œuvre, d’une envergure et d’une fécondité comparables à celles des travaux d’un Archimède ou d’un Newton.

Rossana Tazzioli

samedi 19 juillet 2008

La recherche spécial Jeux mathématiques


J'ai enfin pu mettre la main sur le numéro spécial de La Recherche consacré aux Jeux mathématiques. Le format est plus petit que La Recherche. C'est peut-être pour ça que j'ai eu du mal à le trouver...
Très bon numéro que je conseille.

jeudi 26 juin 2008

Pour la Science 369




Le numéro 369 de Pour la Science est particulièrement intéressant pour les mathématiciens, car il contient trois articles sur les maths :

  • Pourquoi se dopent-ils ? La théorie des jeux expliquerait le comportement de certains coureurs cyclistes professionnels.

  • L'optimisation combinatoire. Bonne introduction.

  • Des mathématiciens sculpteurs. L'article de Jean-Paul Delahaye.


< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 >