Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


mardi 2 novembre 2010

Le génie qui s'est retiré du monde

Le point.fr a consacré le 30 septembre un très intéressant article sur Grigori Perelman, célèbre et énigmatique mathématicien de Saint- Pétersbourg. On y apprend quelle est sa vie de tous les jours.


Il y a un autre article dans La Russie d'Aujourd'hui sur le même sujet daté du 30 juillet.

mercredi 20 octobre 2010

Quand les chiffres travestissent la réalité

Quand les chiffres travestissent la réalité

Un article du Temps daté du 19 octobre 2010

mardi 21 septembre 2010

Tangente dans les kiosques suisses


Depuis hier, 20 septembre 2010, le magazine Tangente est diffusé dans les kiosques de Suisse romande. Pour marquer cet événement, le numéro 136, exceptionnellement plus important que d'habitude, a consacré vingt pages aux mathématiques suisses.

Prévenez vos correspondants, suisses ou non, en leur demandant à leur tour de prévenir leurs relations dans ce pays. C'est en effet à la condition que les ventes soient suffisantes que le diffuseur, la société Naville, accepte de pérenniser la présence de Tangente en Suisse.

mardi 13 juillet 2010

Jeux mathématiques et énigmes policières

Actuellement dans les kiosques :

mardi 22 juin 2010

Un ballon de foot fractal

Un ballon de foot fractal... et d’autres objets étranges.

Un superbe article de Jos Leys, paru dans Images des Mathématiques, avec des illustrations d'une beauté toute... mathématique.

samedi 5 juin 2010

Le problème des n dames pour illustrer les méta-heuristiques

Le but du problème des huit dames est de placer huit dames d'un jeu d'échecs sur un échiquier de 8×8 cases sans que les dames se menacent mutuellement, conformément aux règles du jeu d'échecs. Par conséquent, deux dames ne devront jamais partager la même rangée, colonne, ou diagonale.
Le problème des n dames est une généralisation de ce problème classique : on considère un échiquier nxn au lieu d'un échiquier 8x8. Bien que ce ne soit pas à proprement parlé un problème d'optimisation, il présente de nombreux avantages :

  • il est visuel et facile à comprendre ;
  • on peut coder la position des dames très simplement : pour chaque colonne, on note sur quelle ligne se trouve la dame. Par exemple, une position sera notée [2, 4, 6, 8, 3, 1, 7, 5] ;
  • on passe très facilement d'une configuration à une configuration voisine : il suffit d'échanger deux colonnes. Une position voisine (mais qui ne satisfait pas forcément les contraintes) de celle ci-dessus est par exemple [2, 1, 6, 8, 3, 4, 7, 5].
On peut le traiter comme un problème d'optimisation si l'on considère qu'il faut minimiser le nombre de conflits (on parlera de conflit quand deux dames se menacent mutuellement). Il s'agira ici de placer n dames sur l'échiquier nxn, sans aucun conflit, en partant d'une solution avec une seule dame par ligne et par colonne (par exemple toutes les dames sur la diagonale) et en échangeant deux colonnes. On ne cherchera pas toutes les solutions possibles : une seule nous suffira. Notons que dans un problème d'optimisation classique, il n'y a en général qu'une seule meilleure solution. Ici il y en a plusieurs.

Lire mon article complet : "Le problème des n dames pour illustrer les méta-heuristiques", Bulletin no 113 de la SSPMP, juin 2010

jeudi 13 mai 2010

Comment choisir 1.000 parmi 100.000

Comment choisir 1.000 parmi 100.000
De la hiérarchie militaire chez les Tatars

Intéressant article de Patrick Popescu-Pampu, Maître de Conférences, Université Paris 7. L'auteur présente la méthode utilisée par certains Tatars, telle qu’elle est rapportée par Marco Polo.

Lire l'article

vendredi 6 novembre 2009

Les Dossiers de La Recherche n°37 : Le pouvoir des mathématiques

Les Dossiers de La Recherche n°37 - Novembre 2009 :
Le pouvoir des mathématiques

Edito

Les mathématiciens sont des explorateurs. Le plus intéressant pour eux n’est pas tant de « résoudre des problèmes » que de définir des buts à atteindre et, surtout, de découvrir des paysages inédits sur les routes qu’ils empruntent pour y parvenir. Les diverses explorations du XXe siècle ont été très fructueuses. Au fil des démonstrations de théorèmes, tel celui de Fermat, ou de conjectures, telle celle de Poincaré, des passerelles ont été jetées entre des régions très différentes des mathématiques. Le XXIe siècle sera tout aussi passionnant. En particulier grâce aux liens des mathématiques avec les autres sciences. Champs habituels d’applications, celles-ci sont sources de problématiques purement mathématiques. Avec la physique, les interactions, anciennes, sont toujours aussi riches. Avec la biologie et, surtout, l’informatique, née il y a à peine plus de cinquante ans, elles commencent, mais leurs promesses sont immenses.

vendredi 21 août 2009

D'Alembert, mathématicien des Lumières


Les génies de la science
N°39 mai - juillet 2009

D'Alembert, mathématicien des Lumières

Tout étudiant de mathématiques a appliqué ou entendu évoquer le théorème de D'Alembert(-Gauss) ou théorème fondamental de l'algèbre, le principe de D'Alembert en mécanique ou le critère de D'Alembert pour les séries. Cependant, D'Alembert réserve nombre d'autres surprises.
Sait-on qu'il a été secrétaire de l'Académie française et non de l'Académie des sciences ? Sait-on que son principal correspondant était Voltaire, plus que Lagrange ? Sait-on que la moitié de son œuvre mathématique se situe après l'Encyclopédie alors qu'on dit qu'il n'en faisait plus guère ?
Alors, qui est D'Alembert ? Grand géomètre aux dires des littérateurs et bon littérateur aux dires des géomètres? Rarement un auteur, surtout scientifique, a suscité des avis aussi tranchés et aussi opposés. L'édition en cours de ses Œuvres complètes permet un regard nouveau.
Ce dossier, fruit de ces recherches, sera donc l'occasion de découvertes et d'imprévus, mais aussi de doutes, ce qui n'aurait pas déplu à ce savant des Lumières.

mercredi 29 juillet 2009

Science et Vie Junior Spécial Nombres


Au sommaire, vous croiserez le fameux nombre pi —qui nous a accordé une interview exclusive— et vous passerez une journée à Preum’s Academy, l’émission TV pour nombre premiers. Sans oublier un passionnant retour dans le passé sur l’histoire des nombres. SURTOUT, vous profiterez des 28 pages d’énigmes mathématiques pour ne pas laisser la poussière recouvrir votre belle cervelle.

Lire le début de l’interview du nombre pi.
Pour savoir comment les Chinois comptaient avec des baguettes.
Tester les jeux.

< 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 >