Le blog-notes mathématique du coyote

 

Extra
Langues :

Editorial

Ce blog a pour sujet les mathématiques et leur enseignement au Lycée. Son but est triple.
Premièrement, ce blog est pour moi une manière idéale de classer les informations que je glâne au cours de mes voyages en Cybérie.
Deuxièmement, ces billets me semblent bien adaptés à la génération zapping de nos élèves. Ces textes courts et ces vidéos, privilégiant le côté ludique des maths, pourront, je l'espère, les intéresser et leur donner l'envie d'en savoir plus.
Enfin, c'est un bon moyen de communiquer avec des collègues de toute la francophonie.


mercredi 31 décembre 2008

2008, l'année qui durera une seconde de plus...

Le 1er janvier 2009, il s’écoulera deux secondes entre 0 h 59 et 1 h 00. La coupable : la Terre, qui n’arrête pas de ralentir en contraignant les scientifiques de l’Observatoire de Paris de donner de temps en temps un coup de pouce à l’heure légale.

De nombreuses activités humaines reposent sur la connaissance précise de l’heure, à la seconde près. Or, celle-ci est traditionnellement conditionnée par la rotation de la Terre par rapport à un référentiel fixe, c’est-à-dire aux étoiles. Tout irait bien dans le meilleur des mondes si ce mouvement n’était perturbé par plusieurs facteurs.
En effet, notre planète perd de façon continue une infime partie de son énergie cinétique, notamment par effet de dissipation dans les phénomènes de marées. Mesurée avec précision, on constate que la vitesse de rotation terrestre oscille autour d’une moyenne, ne cessant de s’accélérer et de ralentir. Toutefois, à longue échéance, le ralentissement est prépondérant.
En pratique, une seconde est ajoutée lorsque la différence entre l’observation et l’heure théorique atteint 0,6 seconde, ce qui permet de rattraper l’écart. Oui, mais quand l’insérer ?
Arbitrairement, les dates butoir ont été fixées aux 30 juin et 31 décembre de chaque année. Lorsque les conditions le requièrent, 23:59:59 est suivi d’un 23:60:00 avant de passer à 24:00:00. Dans ce cas, la durée de la journée est de 86.401 secondes au lieu des 86.400 habituelles. Notons que pour des raisons de synchronisation, ce passage est programmé au même instant pour le monde entier. C’est pour cela qu’en Suisse, dont l'heure d'hiver est décalée d'une heure par rapport au Temps Universel (on dit « TU + 1 ;», voir plus bas), cette seconde est intercalée entre 00:59:00 et 01:00:00.

Et si le mouvement s'inverse ?

Dans l’éventualité où la rotation de la Terre s’accélérerait, cette seconde pourrait être retranchée et on passerait ainsi directement de 23:59:58 à 00:00:00. Mais ce cas ne s’est encore jamais produit depuis la mise en application de ce principe en 1972. De même, si le ralentissement s’emballait, il est prévu d’introduire une seconde intercalaire supplémentaire le 31 mars ou le 30 septembre, car un accord international signé en 1972 stipule qu’en raison de certaines applications pratiques (le GPS entre autres), la différence ne doit jamais dépasser une seconde.
La responsabilité de l’ajout (ou du retrait) de cette seconde intercalaire repose sur le département Systèmes de Référence Temps-Espace (SyRTE), un département de l'Observatoire de Paris qui exerce spécialement ses activités dans les domaines de la mesure de la rotation de la Terre et de la métrologie du temps. La prédiction et l'annonce de ces secondes intercalaires est à charge du Service International de la Rotation Terrestre et des Systèmes de Référence (IERS), implanté au SyRTE, dont les décisions sont ensuite mises en application par les organismes nationaux et internationaux responsables de la diffusion du temps.

Le temps, une affaire internationale

Un autre organisme, le LNE-SYRTE, "fabrique" le Temps Universel Coordonné (TUC, ou UTC, souvent abrégé UT, ou TU). C’est celui que vous pouvez consulter via l’horloge parlante, après y avoir ajouté ou retranché l’écart correspondant à votre fuseau horaire.
Mentionnons ici une erreur aussi lamentable que récurrente à propos de l'heure GMT (Greenwich Mean Time). Historiquement, elle correspond au méridien de Greenwich alors que le temps UTC correspond à ce méridien zéro mais avec un décalage de 12 heures. Ainsi, le 31 décembre à 14:00 TU il sera 15:00 à Paris, alors que selon la définition originelle du temps GMT, nous serons déjà le 1er janvier de l’année suivante à 02:00 GMT. Rappelons que l’Union Astronomique Internationale prohibe l’usage de l’heure GMT... depuis 1928.
Enfin, tout ceci ne doit pas vous faire oublier que la prochaine seconde intercalaire sera introduite pendant la nuit de la Saint-Sylvestre. Le 1er janvier à 01:00:00, vous devrez donc interrompre vos activités et retarder vos montres d’une seconde…

Source : Futura-Sciences

jeudi 4 décembre 2008

Mort de Kiyoshi Itô

Figure légendaire des probabilités et père du calcul stochastique, le mathématicien japonais Kiyoshi Itô est mort à Kyoto (Japon) lundi 10 novembre, à l'âge de 93 ans. Ses travaux ont notamment été récompensés par le premier prix Gauss, décerné en 2006 par l'Union mathématique internationale (UMI) et l'Union mathématique allemande (DMV) et distinguant une oeuvre mathématique aux nombreuses applications. Peu de mathématiciens peuvent se targuer d'avoir autant contribué que M. Itô à façonner le monde. Ses travaux ont irrigué nombre de domaines étrangers aux mathématiques, depuis l'aéronautique et la biologie jusqu'à la finance.
Né le 7 septembre 1915 dans une région rurale du nord du Japon, il étudie les mathématiques à l'université de Tokyo à une époque où, selon lui, les probabilités ne constituent pas encore une discipline à part entière. "Quand j'étais étudiant, dira-t-il en 1998, en recevant le prix Kyoto pour les sciences fondamentales, il y avait très peu de chercheurs en probabilités. Avec, parmi les rares, Kolmogorov en Russie et Paul Lévy en France."
Diplômé en 1938, il rejoint le Bureau des statistiques japonais, où il restera jusqu'en 1943. Un an plus tôt, il publie une contribution dans Japanese Journal of Mathematics qui marque le début de ses travaux sur les processus aléatoires - ou "stochastiques". Nommé maître de conférences à l'université de Tokyo en 1943, il obtient son doctorat deux ans plus tard.
Ses premiers travaux ne sortent guère du Japon quelque peu enclavé de l'après-guerre. Dans les années 1950, plusieurs séjours à l'étranger, en particulier au célèbre Institute for Advanced Studies (IAS) de Princeton (Etats-Unis), lui permettent de diffuser ses idées.
"Kiyoshi Itô est aujourd'hui au moins considéré comme le plus grand probabiliste du XXe siècle", dit le mathématicien Jean-Pierre Bourguignon, directeur de l'Institut des hautes études scientifiques (IHES). Lorsqu'un phénomène est aléatoire (ou pseudo-aléatoire) - mouvements d'une molécule de gaz dans une enceinte, variations du cours d'une action, turbulences de masses d'air, etc. -, la fonction mathématique qui le décrit ne se plie guère aux techniques d'analyse classiques. Le grand apport du mathématicien japonais a été d'inventer les outils - en particulier la "formule d'Itô" - capables d'examiner et de manipuler de manière comparable les processus aléatoires et les processus déterministes (ou classiques).

LE PÈRE DU "CALCUL STOCHASTIQUE"

"Au lycée, on apprend le principe simple selon lequel une fonction dérivable est l'intégrale de sa dérivée, explique Jean-François Le Gall, professeur à l'université Paris-XI et membre de l'Institut universitaire de France. La "formule d'Itô" est un outil qui permet de généraliser ce principe aux fonctions irrégulières parce que dépendant du hasard." Cette "formule d'Itô" (ou lemme d'Itô) forme la pierre angulaire de ce que les mathématiciens appellent le "calcul stochastique", dont Kiyoshi Itô est véritablement le père.
Le calcul stochastique a bien sûr des applications dans la finance. "En mathématiques financières, toutes les applications liées au problème d'évaluation d'actifs ou de produits financiers comme les options d'achat ou de vente reposent sur le calcul stochastique", explique M. Le Gall.
Les solutions aux problèmes de probabilités appliqués, comme les problèmes dits de "filtrage" - où l'on ne "voit" qu'une partie du problème que l'on cherche à résoudre -, reposent aussi sur les contributions de Kiyoshi Itô. "Par exemple, le déplacement d'une fusée n'est pas exactement la solution d'une équation différentielle classique : il est la solution d'une équation différentielle perturbée par des petits "bruits" aléatoires comme les variations du vent sur la carlingue, les vibrations du moteur, etc., illustre M. Le Gall. Ce type de problèmes se traite grâce au calcul stochastique d'Itô."
"Kiyoshi Itô est pour moi la figure emblématique du mathématicien dont les travaux, pourtant très fondamentaux, trouvent en définitive d'innombrables applications en dehors des mathématiques", dit M. Bourguignon. Même si, ajoute M. Le Gall, ses apports ont eu, "pour les mathématiques elles-mêmes, la plus grande importance".

Stéphane Foucart, dans Le monde.